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Mapping cells through time and space with 
moscot

Dominik Klein1,2,14, Giovanni Palla1,3,14, Marius Lange1,2,4,14, Michal Klein5,14, Zoe Piran6,14, 
Manuel Gander1, Laetitia Meng-Papaxanthos7, Michael Sterr8,9, Lama Saber8,9,10, 
Changying Jing8,9,11, Aimée Bastidas-Ponce8,9, Perla Cota8,9,10, Marta Tarquis-Medina8,9, 
Shrey Parikh1, Ilan Gold1, Heiko Lickert8,9,10 ✉, Mostafa Bakhti8,9, Mor Nitzan6,12,13, Marco Cuturi5 & 
Fabian J. Theis1,2,3 ✉

Single-cell genomic technologies enable the multimodal profiling of millions of cells 
across temporal and spatial dimensions. However, experimental limitations hinder the 
comprehensive measurement of cells under native temporal dynamics and in their 
native spatial tissue niche. Optimal transport has emerged as a powerful tool to address 
these constraints and has facilitated the recovery of the original cellular context1–4.  
Yet, most optimal transport applications are unable to incorporate multimodal 
information or scale to single-cell atlases. Here we introduce multi-omics single-cell 
optimal transport (moscot), a scalable framework for optimal transport in single-cell 
genomics that supports multimodality across all applications. We demonstrate the 
capability of moscot to efficiently reconstruct developmental trajectories of 1.7 million 
cells from mouse embryos across 20 time points. To illustrate the capability of  
moscot in space, we enrich spatial transcriptomic datasets by mapping multimodal 
information from single-cell profiles in a mouse liver sample and align multiple 
coronal sections of the mouse brain. We present moscot.spatiotemporal, an 
approach that leverages gene-expression data across both spatial and temporal 
dimensions to uncover the spatiotemporal dynamics of mouse embryogenesis.  
We also resolve endocrine-lineage relationships of delta and epsilon cells in a 
previously unpublished mouse, time-resolved pancreas development dataset using 
paired measurements of gene expression and chromatin accessibility. Our findings 
are confirmed through experimental validation of NEUROD2 as a regulator of epsilon 
progenitor cells in a model of human induced pluripotent stem cell islet cell 
differentiation. Moscot is available as open-source software, accompanied by 
extensive documentation.

Single-cell genomic technologies have increased our understanding 
of the dynamics of cellular differentiation and tissue organization. 
Single-cell assays such as single-cell RNA sequencing (scRNA-seq) pro-
file the molecular state of individual cells at high resolution, whereas 
spatial assays recover their spatial organization. However, these experi-
ments involve destruction of the cell and capture only a subset of mole
cular information. As a result, cellular profiles have to be realigned.

Previous work addressed such problems by using optimal trans-
port (OT), a field concerned with mapping and comparing probability 
distributions1. OT has been instrumental in delineating cellular repro-
gramming processes2, reconstructing tissue architecture by enhanc-
ing spatial data with single-cell references3 and building common 

coordinate frameworks (CCFs) of a biological system by aligning spatial 
transcriptomic data4.

Despite the potential of OT-based methods to address mapping  
problems in single-cell genomics, their use faces three key challenges. 
First, implementations of OT-based tools are geared to unimodal data. 
Second, current OT methods used in single-cell genomics are compu-
tationally expensive. That is, time complexity scales quadratically5 
(or cubically for Gromov–Wasserstein extensions1,6) in the number 
of cells. Similarly, memory scales quadratically, which prevents their 
application to atlas-scale datasets7. Third, existing tools build on  
heterogeneous implementations2–4, which make it difficult to adapt  
or combine approaches to new problems.
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Here we present moscot, a computational framework to solve map-
ping and alignment problems, and we demonstrate its capabilities for 
temporal, spatial and spatiotemporal applications. Moscot is based 
on three design principles to overcome current limitations. Moscot 
supports multimodal data, improves scalability and unifies previous 
single-cell applications of OT in the temporal and spatial domain. We 
also introduce a previously undescribed spatiotemporal application. 
An intuitive application programming interface (API) that interacts 
with the broader scverse8 ecosystem makes these features accessible.

We demonstrate the capabilities of moscot by studying the develop-
ment of 1.7 million cells during mouse embryogenesis. Furthermore, we 
map information from multimodal cellular indexing of transcriptomes 
and epitopes by sequencing (CITE-seq) to high-resolution spatial read-
outs in the mouse liver and align large spatial transcriptomic sections 
of mouse brain samples. Concurrently to SPATEO9, we introduce the 
concept of spatiotemporal mapping and demonstrate its benefits using 
a spatiotemporal atlas of mouse embryogenesis10. Finally, we jointly 
profile gene expression and chromatin accessibility during mouse 
pancreas development and apply moscot to better delineate cell tra-
jectories of delta and epsilon cells. We identify potential transcription 
factors (TFs) that drive lineage formation and experimentally verify 
NEUROD2 as a TF that regulates epsilon-cell formation during human 

endocrinogenesis in vitro. Moscot unlocks OT for multiview atlas-scale 
single-cell applications and it is accessible, together with extensive 
documentation, at https://moscot-tools.org.

Moscot is an OT framework for mapping cells
Moscot translates biological mapping and alignment tasks into OT 
problems and solves them using a consistent set of algorithms. Moscot 
takes unpaired datasets as input; for example, measurements taken 
at different time points or corresponding to different spatial tran-
scriptomic slides, each containing one or more molecular modali-
ties. Moscot also accepts previous biological knowledge, such as 
cellular growth rates, to guide the mapping process. Moscot solves 
an OT problem and generates a coupling matrix that probabilistically 
relates samples in each of the datasets. Equipped with that coupling 
matrix, moscot offers various application-specific downstream analysis  
functions (Fig. 1a and Methods).

Moscot builds on three notions of OT to accommodate various 
biological problems. These differ in how samples are related across 
cellular distributions: Wasserstein-type (W-type)5 OT compares two 
sets of cells with the same cellular features; Gromov–Wasserstein-type 
(GW-type)6 OT compares cellular distributions living in different spaces; 
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Fig. 1 | Moscot enables efficient multimodal OT across single-cell 
applications. a, Schematic of a generic OT pipeline for single-cell genomic 
analyses (from left to right): experimental shifts (for example, time points and 
different spatial slides) lead to disparate cell populations. Previous biological 
knowledge (for example, proliferation rates and spatial arrangement) is often 
available and should be used to guide the mapping process. OT aligns cellular 
distributions by minimizing the displacement cost. The learnt mapping 

facilitates various downstream analysis opportunities. b, Moscot introduces 
three key innovations that unlock the full power of OT. First, it supports 
multimodal data across all models. Second, it overcomes previous scalability 
limitations to enable atlas-scale applications. Third, moscot is a unified framework 
with a consistent API across biological problems, which will facilitate usability 
and enable extensions to new problems in a straightforward manner. Panels a 
and b were created using BioRender (https://www.biorender.com).

https://moscot-tools.org
https://www.biorender.com
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and fused Gromov–Wasserstein-type (FGW-type)11 OT compares cells 
with partially shared features (Methods and Supplementary Note 1). 
We built on previous OT-based method assumptions to map cells across 
temporal and spatial domains (Methods).

To support multimodality throughout the framework, we leveraged 
shared latent representations (Fig. 1b and Methods). We made moscot 
applicable to atlas-scale datasets by reducing the computation time and 
the memory consumption of W-type, GW-type and FGW-type notions by 
orders of magnitude compared with previous OT-based tools (Fig. 1b, 
Methods and Supplementary Note 2). Specifically, we based moscot 
on optimal transport tools (OTT)12, a scalable JAX implementation 
of OT algorithms that supports just-in-time compilation, on-the-fly 
evaluation of the cost function and GPU acceleration (Methods). When 
required by the size of the dataset, we used recent methodological 
innovations13–15 that constrain the coupling matrix to be low-rank, which 
enabled linear time and memory complexity for W-type, GW-type and 
FGW-type notions (Supplementary Note 3). A unified API makes moscot 
easy to use and extend (Supplementary Fig. 1). In particular, modular 
implementation enables the use of similar infrastructure for solving 
different biological problems.

Reconstructing mouse embryogenesis
Modelling cell-state trajectories for biological systems that are not in 
steady state requires time-course single-cell studies combined with 
computational analysis to infer cellular differentiation across time 
points. Waddington OT2 (WOT) solves the problem using W-type OT. 
However, WOT remains limited to unimodal gene-expression data 
and does not scale to large datasets. Thus, we created moscot.time. 
Our model inherits the popular cell-growth-rate modelling of WOT 
and is applicable to multimodal data. Moreover, it scales to millions 
of cells and, like all trajectory inference methods in moscot, can be 
interfaced with tools such as CellRank 2 (refs. 16,17) for downstream 
analyses (Methods).

We asked whether the improved scalability of moscot.time translates 
into a more faithful description of biological systems. Thus, we applied 
our model to a published atlas7 of early mouse development that con-
tains almost 1.7 million cells across 20 time points spanning embryonic 
day 3.5 (E.3.5) to E13.5 (Fig. 2a and Methods). We first assessed whether 
we could use WOT2 to analyse this dataset. We selected the E11.5–E12.5 
time point pair, which contained more than half a million cells, and 
benchmarked memory and computation time on subsets of increasing 
cell number (Fig. 2b, Methods and Supplementary Table 1). Moscot.time 
computed a coupling for all 275,000 cells at both time points, whereas 
WOT ran out of memory as soon as 75,000 cells was exceeded. When we 
included a low-rank OT approximation in moscot13–15, this addition com-
puted coupling faster than default moscot.time once 75,000 cells per 
time point was exceeded. The linear memory complexity of moscot.time 
enables it to process developmental atlases on a laptop, whereas WOT 
failed on a server (Fig. 2b, Methods and Extended Data Fig. 1).

As WOT did not scale to a dataset of this size, the authors of the devel-
opmental atlas7 devised a deterministic approach based on k-nearest 
neighbour (kNN) matching called trajectories of mammalian embryo-
genesis (TOME). We formulated two metrics that operated on the level 
of germ layers and cell types (Methods and Supplementary Table 2). For 
both metrics, moscot.time achieved comparable performance to TOME 
across all time points and developmental stages, even though TOME 
was specifically designed for this dataset (Fig. 2c). For the low-rank 
approximation, the accuracy for both metrics converged to default 
moscot.time for sufficiently large ranks while being faster (Extended 
Data Fig. 1b,c). Moreover, the performance of moscot mappings was 
robust with respect to rank and embedding (Supplementary Figs. 2–4).

We further compared TOME and moscot.time using cellular growth 
rates and death rates. As TOME only provides cluster-level mappings, 
we extended the original approach to produce cell-level output with 

cell-level TOME (clTOME) (Methods). Using the E8.0–E8.25 pair of 
time points, we mapped cells using moscot.time and clTOME (Fig. 2d). 
clTOME frequently assigned growth rates much smaller than one and 
predicted that more than 19% of the population at this stage is apop-
totic (Fig. 2e and Supplementary Table 3). Such a high death rate rep-
resents an unrealistic scenario for embryonic development, whereby 
beyond E7.0, the fraction of cells going through apoptosis is typically 
<10%18. By contrast, we were able to tune the growth rates predicted 
by moscot.time to be more realistic and cell-type specific (Fig. 2e 
and Methods). These results generalized to all other time points that 
contained sufficient cell numbers (Supplementary Figs. 5–7). We also 
compared predicted growth rates with scanpy-computed cell-cycle 
scores19 on an in vitro reprogramming dataset2, for which we expected 
predictions to be less affected by cell-sampling stochasticity. The pre-
dictions generated using moscot.time correlated better with averaged 
growth rates for each cell set than when using clTOME (Pearson’s r of 
0.48 compared with 0.13, respectively; Supplementary Fig. 8).

Next, we considered the reliability of the models for cell-fate pre-
diction. We considered E8.25 first heart field cells, a population that 
emerges from the splanchnic mesoderm20. We used moscot.time 
and clTOME to compute ancestor probabilities, which quantify the 
likelihood of E8.0 cells to differentiate to E8.25 first heart field cells. 
We compared ancestor probabilities with the expression of known 
driver genes for the formation of first heart field cells at E8.0 (Fig. 2f, 
Methods and Supplementary Table 3). Using moscot.time, we consist-
ently achieved higher absolute Spearman’s correlations (Fig. 2g), a 
result that generalized to three other cell types we investigated across 
early development (Fig. 2h and Supplementary Table 4). Finally, we 
showed that mapping metacells21 instead of single cells yielded com-
parable results in terms of germ layer and cell type scores, but failed to 
resolve rare primordial germ cells at E9.5 and gave lower driver gene 
correlations for the pancreatic epithelium (Methods and Extended 
Data Fig. 2).

Mapping and aligning spatial samples
Spatial omic technologies enable the profiling of thousands of cells 
in their native tissue environment. The analysis of such data requires 
methods that are able to integrate datasets across molecular layers 
and spatial coordinate systems. OT has proven useful to tackle these 
problems, particularly novoSpaRc3 for gene-expression mapping and 
PASTE4 for the alignment of spatial transcriptomic datasets. Moscot 
implements both applications and leverages scalable implementations 
and more performant algorithms (Methods).

Image-based spatial transcriptomic data are often limited in the num-
ber of genes measured (hundreds to a few thousands)22. The mapping 
problem of moscot learns a coupling between dissociated single-cell 
profiles and their spatial organization using an FGW-type problem. This 
enabled us to incorporate cellular similarities in molecular features 
and physical distances of cells (Methods). The OT solution facilitated 
the transfer of gene-expression or additional multimodal profiles to 
spatial coordinates (Fig. 3a).

We benchmarked moscot against two state-of-the-art methods, 
Tangram23 and gimVI24, on a recent benchmark25. We assessed the 
quality of the mapping process by computing correlations of held-out 
genes in spatial coordinates (Methods). Moscot consistently outper-
formed the other methods across 14 datasets generated using various 
technologies. Furthermore, for each dataset, we quantified spatial 
correspondence, a measure of correlation between gene-expression 
similarity and distances in physical coordinates, as originally pro-
posed3 (Methods). A spatial transcriptomic dataset has high spa-
tial correspondence if nearby cells have similar gene-expression 
profiles (Supplementary Fig. 9). Moscot showed a positive correla-
tion between spatial correspondence and accuracy (Fig. 3b), which 
indicated that it is able to leverage spatial associations between 
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distances in gene expression and physical space. Nevertheless, even 
when spatial correspondence was low, moscot outperformed the 
other methods.

We then set out to map multimodal single-cell profiles to their spatial 
context. This method is of particular interest as spatial transcriptomic 
technologies are mostly limited to gene-expression measurements22. 
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Table 1). We compared WOT2 with default moscot.time and low-rank13–15 
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does not support GPU acceleration). c, Accuracy comparison between TOME7 
and moscot.time in terms of germ-layer and cell-type transition scores by 
developmental stage (Methods and Supplementary Table 2). d, Uniform manifold 
approximation and projection (UMAP) projection of the E8.0–E8.25 time point 
pair, coloured by original cluster annotations. e, Growth-rate estimates of 
moscot.time (top) and clTOME (bottom) for the five most prevalent E8.0 cell 

types in d (highlighted in bold) as histograms (left) and on UMAP projections 
(right). The black vertical bar denotes a growth rate of one. f, The ancestor 
probability for E8.25 first heart field cells (left) versus gene-expression levels of 
known driver genes Tbx5, Nkx2-5 and Tnnt2 (right; Methods and Supplementary 
Table 7) calculated using moscot.time. g, Quantification of the comparison in f 
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vertical lines correspond to quarters, whiskers are outliers) of absolute Spearman’s 
correlation values between ancestor probabilities and known driver-gene 
expression for moscot.time and clTOME (Methods and Supplementary Table 4). 
Panel a was created using BioRender (https://www.biorender.com).
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We considered a CITE-seq dataset of around 91,000 cells of the mouse 
liver26 and a spatial transcriptomic section consisting of about 367,000 
cells measured using the Vizgen MERSCOPE platform (Fig. 3c). We 

incorporated gene-expression, protein and spatial information 
to recover the spatial organization of the proteins (Methods). We 
then mapped annotations from the CITE-seq dataset as no cell-type 
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annotation was provided in the original data (Extended Data Fig. 3). 
Use of any of the other methods was not feasible owing to prohibitive 
time or memory complexity.

A central problem in liver physiology is the identification of central 
veins (CVs) and portal veins (PVs) to characterize liver zonation27. 
This problem can be solved by considering expression patterns of 
marker genes, cell-type localization and protein abundance. CVs can 
be identified using Axin2, a CV-associated endothelial cell marker28 
(Fig. 3d). Similarly, Vwf, a known marker for endothelial cells in blood 
vessels, indicates the presence of both CVs and PVs29. However, owing 
to the limited number of genes measured in the spatial transcrip-
tomic data, it proved challenging to identify PVs on the basis of marker 
gene expression. Leveraging moscot, we overcame this constraint 
by mapping the expression of the PV-specific markers Adgrg6 and 
Gja5 (ref. 26) (Fig. 3e and Supplementary Fig. 10). Another limita-
tion of characterizing cellular niches of liver zonation was the lack 
of detailed cell-type annotation and protein expression. Hence, we 
used moscot to transfer the cell-type annotation provided by the 
single-cell dataset. Focusing on resident liver macrophages called 
Kupffer cells, we confirmed their enriched presence in areas around 
PVs where liver sinusoids are more prevalent26. We corroborated 
our findings by mapping the folate receptor β protein to its spatial 
organization (Fig. 3f). By integrating results from cell-type annota-
tion, measured and imputed marker genes, and transferred protein 
expression, we could characterize in detail the tissue niche of liver 
zonation in a mouse liver sample. We quantitatively confirmed the 
benefits of incorporating multiple modalities by imputing assay for 
transposase-accessible chromatin with sequencing (ATAC–seq) data 
on a spatial multiome dataset of human tonsils. This analysis consisted 
of the joint profiling of spatially resolved ATAC–seq and RNA-seq data 
(Supplementary Fig. 11).

A different prevalent task in spatial transcriptomics is building a 
consensus view of the tissue of interest. This requires the alignment 
of several spatial measurements from contiguous sections or from 
the same section from different biological replicates. The alignment 
problem of moscot facilitates the alignment of several sections and 
the building of such a consensus view from multiple spatial transcrip-
tomic slides (Fig. 3g). This is an important step towards building a CCF 
of biological systems. First, we evaluated the capability of moscot to 
spatially align synthetic datasets adapted from previous benchmark 
studies4,30 and with other registration methods not specific to spatial 
omic data. The benchmark results showed that moscot performed on 
par or better than the method PASTE4 (Methods and Supplementary 
Figs. 12 and 13).

Next, we set out to investigate the scalability of the methods to 
larger datasets. To that end, we used the brain coronal sections from 
MERSCOPE (Methods). This dataset is prohibitively large for methods 
such as PASTE (around 250,000 cells for section 1 and about 300,000 
cells for section 2; Methods). Moscot accurately aligned two samples 
to the reference slide for both coronal sections of the mouse brain. 
We observed that for most genes, there was a strong correspond-
ence of gene-expression densities across cellular neighbourhoods 
both quantitatively and visually (Fig. 3h,i, Extended Data Fig. 4 and  
Supplementary Figs. 14 and 15).

Charting spatiotemporal mouse development
The advent of spatially resolved single-cell datasets of developmental 
systems presents the challenge of developing methods that are able to 
delineate cellular trajectories and leverage both intrinsic and extrinsic 
effects on cellular phenotypes. Here we introduce a trajectory inference 
method that incorporates similarities in gene-expression profiles and 
physical distances to infer more accurate trajectories. It is based on a 
FGW-type problem that merges moscot.time and moscot.space into 
a spatiotemporal method (Methods).

We assessed the capabilities of moscot to perform trajectory infer-
ence on the mouse embryogenesis spatiotemporal transcriptomic 
atlas (MOSTA)10, which consists of eight time points from E9.5 to E16.5.  
We analysed a single slide for each time point, which resulted in a 
total of about 500,000 spatial array locations (hereafter denoted 
as bins, per a previously described notation10; Fig. 4a, and Methods). 
We used annotations to major tissue regions and organs as provided 
by the authors10 and evaluated the annotation-transition score over 
computed trajectories (Methods and Supplementary Table 5). We 
compared the performance of moscot.spatiotemporal to trajecto-
ries computed from only gene-expression information across time 
points using either moscot.time (a W-type problem) or TOME7 (Fig. 2). 
Accounting for spatial similarity in the trajectory inference resulted 
in an improved prediction of annotation-transition scores, with an 
average improvement across time points of 5% and 13% with respect to 
moscot.time and TOME, respectively (Fig. 4b and Methods). Moreover, 
moscot.spatiotemporal outperformed PASTE2 (ref. 31) and was robust 
with respect to hyperparameters (Supplementary Fig. 16). Next, we 
used moscot to identify driver and target genes of liver development 
(Methods), which revealed known hepatic genes Afp, Alb and Apoa2 and 
established driver genes that encode the TF HNF4A (Supplementary 
Table 6).

Subsequently, we focused on the fates of heart and brain regions 
of the developing mouse embryo. For each pair of consecutive time 
points, we visualized heart bins at the earlier time point and where these 
bins mapped to at the later time point (Fig. 4c). To further characterize 
cellular dynamics, we interfaced moscot with CellRank 2 (refs. 16,17) 
(Methods), which enabled the identification of cellular fates on the basis 
of the coupling matrix provided by moscot. The predicted fates corre-
sponded to the known differentiation lineages of the mouse embryo10 
(Extended Data Fig. 5). We also identified known driver genes of heart 
development, such as Gata4 and Tbx20 (which encode TFs) and genes 
related to metabolism and heart regeneration, such as Myl7 and Myh6 
(Fig. 4d and Supplementary Table 7).

A study by Chen et al.10 provided a cell-type annotation of the brain 
tissue at E16.5, but not for earlier time points. To investigate develop-
mental trajectories in the brain, we utilized moscot to transfer cell- 
type annotation from the E16.5 data to preceding time points. Visu-
ally, predicted annotations retained the spatial distribution of the 
manual annotation (Fig. 4e), and quantitatively, they showed strong 
correspondence with reported marker genes (Methods and Supple-
mentary Fig. 17).

The interplay between moscot and CellRank 2 enabled us to identify 
terminal states of brain development in the mouse embryo, with fate 
probabilities that were in accordance with the predicted annotation 
(Supplementary Fig. 18). Analogous to the heart, we predicted driver 
genes of neuron and fibroblast development (Fig. 4f,g and Methods). 
For neuronal fate, identified TF-encoding genes such as Tcf7l2, Sox11, 
Myt1l and Zfhx have previously been reported as relevant for neuronal 
development (Supplementary Table 8). Notably, our results included 
known spatially localized drivers, such as Neurod2, which is associated 
with forebrain glutamatergic neurons32, and non-regional drivers, such 
as Sox11 (Fig. 4g). For fibroblasts, we identified the TF-encoding genes 
Prrx1, Runx2 and Msx1, and known key genes such as Dcn, Col1a2 and 
Col1a1 (Supplementary Table 9). Finally, we demonstrated the capabili-
ties of moscot to recover trajectories in three-dimensional (3D) spati-
otemporal data by identifying key TFs in the embryonic development 
of Drosophila33 (Methods and Supplementary Fig. 19).

Delineating mouse pancreas development
To highlight the potential of moscot for studying complex lineage rela-
tionships, we focused on the poorly understood process of delta cell 
and epsilon cell formation during mouse pancreas development16,34,35 
(Supplementary Note 4). Hypotheses of lineage specification range 
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from delta cells splitting simultaneously with alpha and beta cells 
after going through a common Fev+ cell state36 to delta cells being 
derived from the same progenitor population as beta cells37. In pre-
vious work16,34, we had proposed that delta cells differentiate from a 
Fev+ population, but we could not resolve their precise lineage hierar-
chy. Similarly, our previous analysis16 had indicated that epsilon cells 
develop from both Ngn3+ progenitors and glucagon-producing alpha 
cells. However, lineage-tracing experiments confirmed that epsilon 
cells that produce ghrelin (encoded by Ghrl) are not in a terminal state 
and can give rise to alpha and PP cells and rare beta cells38.

We wanted to better understand the cellular fates of pancreas cells. 
Therefore, we used the NGN3–Venus fusion (NVF) reporter mouse 
line34 to generate a single-nucleus (snRNA) and ATAC multiome dataset 
of E14.5 (about 9,000 nuclei), E15.5 (10,000 nuclei) and E16.5 (3,000 
nuclei) of the pancreatic epithelium enriched for endocrine progenitors 
(Fig. 5a and Methods). Ngn3 encodes a master regulatory TF necessary 
and sufficient for endocrine-cell formation in the pancreas. Hence, 
enrichment of Ngn3+ progenitors enabled a detailed study of endocrine 
lineage induction and segregation into glucagon-producing alpha 
cells, insulin-producing beta cells, somatostatin-producing delta cells, 
pancreatic polypeptide-producing PP cells and ghrelin-producing 
epsilon cells. Compared with previous scRNA and ATAC–seq studies 
that relied on bulk ATAC measurements35 or on a low number of cells 
for scRNA-seq36, our dataset enabled a comprehensive multimodal 
analysis of endocrine-cell differentiation.

We observed a distributional shift in cell-type abundance between 
time points (Fig. 5b and Extended Data Fig. 6). Clustering based on 
both modalities revealed the expected cell-type heterogeneity in the 
endocrine branch, ranging from Ngn3Low to heterogeneous progenitors 
of endocrine-cell states (Fig. 5c, Methods, Supplementary Table 10 and 
Supplementary Fig. 20). We linked the cells across the three time points 
with moscot.time by leveraging information from both gene-expression 
and ATAC data (Supplementary Note 5). To validate the couplings, we 
aggregated the transport matrix to the cell-type level and found that 
the majority of recovered transitions were supported by the litera-
ture16,34,36,39,40 (Fig. 5d, Methods and Supplementary Fig. 21). We also 
studied the influence of cost and embeddings. The results revealed 
the necessity of using geodesic costs while being robust with respect 
to the embedding (Methods and Supplementary Fig. 22). Moreover, 
we recovered the correct cell-cycle direction using moscot (Supple-
mentary Note 6 and Supplementary Fig. 23).

Subsequently, we explored the lineage segregation of delta and 
epsilon cells. Therefore, we restricted our analysis to the endocrine 
branch and further subclustered the poorly understood Fev+ delta 
cell population. To emphasize the developmental axes of variation, we 
computed an embedding using PHATE41 (Fig. 5e). We used moscot to 
compute putative ancestry and descendancy relationships and found 
that alpha, beta and delta cells are predicted to mostly remain in their 
cellular identity as expected (Methods and Supplementary Figs. 24 
and 25). We predicted both epsilon and delta cells to follow a similar 
trajectory (Fig. 5d,e). In particular, moscot modelled that progenitors 
of epsilon cells and a large proportion of progenitor cells of delta cells 
branch off the Ngn3High population at a similar cellular state.

Next, we quantified the predicted descendancy relationships 
between cell types and confirmed that the cell transitions computed 
from E14.5 and E15.5 data are in line with results obtained for E15.5 and 
E16.5 (Fig. 5f). In particular, epsilon cells partially mature into alpha cells 
(Fig. 5f and Supplementary Fig. 26), as previously reported37,38. Moreo-
ver, most of the epsilon cell population was derived from a population 
that we refer to as epsilon progenitors, which themselves we predict 
to originate from the Ngn3High endocrine progenitors (Supplementary 
Fig. 27). Contrary to our recent hypothesis34, the epsilon progenitor 
population showed a low mean expression of Fev, which implied that 
these cells have a relatively immediate expression of Ghrl following 
Fev (Supplementary Fig. 28). We corroborated this hypothesis using 

independent computational methods (Extended Data Fig. 7); however, 
experimental validation of this claim is necessary.

Based on the results of moscot.time, delta cells are mainly derived 
from Fev+ delta cells. Although our data did not reveal a single source 
of origin of Fev+ delta cells, moscot predicted that a considerable pro-
portion of Fev+ delta cells have a similar origin as epsilon cells (Fig. 5f). 
We computationally confirm our findings using a published dataset 
covering E12.5 and E13.5 (ref. 34) (Supplementary Fig. 29). Next, we 
investigated the similarity of chromatin accessibility (Fig. 5g and 
Extended Data Fig. 8). The similarity between the ATAC profiles of 
epsilon progenitors, Fev+ delta 0 cells, Fev+ delta 1 cells, epsilon cells 
and delta cells corroborated the hypothesis that delta and epsilon 
cells have similar ancestries. Moreover, we observed notable simi-
larities in chromatin accessibility in the promoter regions of both 
Ghrl (epsilon) and Hhex, a key regulatory TF of delta-cell formation42 
(Supplementary Fig. 30). To identify additional relevant chromatin 
regions, we performed differentially accessible peak analysis of the 
epsilon progenitor population (Supplementary Table 11) and the Fev+ 
delta population (Supplementary Table 12). The findings showed 
that the peaks are co-accessible among the proposed ancestors of 
delta and epsilon cells (Supplementary Note 7 and Supplementary 
Fig. 31). Moreover, the expression of Arx as an alpha-cell determi-
nant and the expression of Pax4 as a beta-cell determinant supported 
the hypothesis of the high plasticity of Fev+ delta cells (Fig. 5f and 
Supplementary Fig. 32).

To learn more about the regulatory mechanisms that drive delta 
and epsilon cell fate, we used moscot.time to find potential driver 
genes (Methods, Supplementary Tables 13–22 and Supplementary 
Fig. 33). The recovery of known driver genes such as Arx and Mafa43 of 
the well-studied alpha and beta cells, respectively, validated the utility 
of this method (Supplementary Tables 13 and 14 and Supplementary 
Fig. 34). Notably, we identified NEUROD2 as the second most relevant TF 
for both the Fev+ delta and the epsilon progenitor populations (Supple-
mentary Tables 19 and 20). The expression of Neurod2 was prominent 
in the epsilon progenitor and Fev+ delta populations across develop-
mental stages (Supplementary Fig. 35). Leveraging information from 
both RNA and ATAC datasets, we identified potential target genes of 
NEUROD2 (Supplementary Tables 23–29 and Supplementary Fig. 36). 
Several of these genes were also expressed in the epsilon lineage, such 
as Lurap1l and Fam107b, thereby implicating a potential regulatory 
function of NEUROD2 for epsilon cell-fate decisions. Although NEU-
ROD1 can regulate islet-cell differentiation44, the expression patterns 
of Neurod1 and Neurod2 are distinct during mouse endocrinogenesis 
(Supplementary Fig. 35) and in human induced pluripotent stem (iPS) 
cell differentiation45, which indicated non-redundant and specific 
functions of these TFs. To experimentally validate our hypothesis, we 
used a human iPS cell differentiation system to generate endocrine 
islet cell types45. The differentiation of NEUROD2 knockout (KO) iPS 
cells to stem-cell-derived islets resulted in a significant decrease in 
the number of ghrelin-expressing cells and reduced levels of GHRL 
mRNA when compared with an wild-type control iPS cell line (Fig. 5h,i 
and Extended Data Fig. 9). This result suggests that NEUROD2 has a 
role in directing epsilon-cell differentiation. At the same time, our 
previous45 and current data indicated that NEUROD2 has no function 
in the specification of alpha, beta and delta cells, results in line with 
what has been reported in mice46.

We leveraged orthogonal approaches to support the hypotheses of 
regulatory mechanisms using feature-sparse OT47, differential feature 
analysis and motif analysis (Methods and Supplementary Figs. 37 
and 38). Similarities in motif profiles indicate a similar cell state, as 
related TFs govern developmental trajectories. Owing to a temporal 
shift between the gene expression of a TF and its activity, profiling of 
motif activity and gene expression within the same sample might fail to 
recover regulatory mechanisms48. Moscot links gene expression at an 
earlier time point with motif activity in cells corresponding to the later 
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time point (Methods, Extended Data Fig. 10, Supplementary Note 8 
and Supplementary Fig. 39). Isl1 and Tead1 had high motif activity in 
delta cells and epsilon cells, respectively, which was complemented by 
high gene expression in their progenitors (Supplementary Tables 30 
and 31). The hypothesis of similar developmental trajectories of delta 
and epsilon cells was corroborated by the similarity of motif activity 
in their progenitors. We further supported this finding using estab-
lished trajectory inference methods (Methods and Supplementary 
Figs. 40–43).

Discussion
We presented moscot, a computational framework for mapping cel-
lular states across time and space using OT. Unlike previous applica-
tions of OT, moscot incorporates multimodal information, scales to 
atlas-sized datasets and provides an intuitive and consistent interface. 
We accurately recovered mouse differentiation trajectories during 
embryogenesis7,10, enriched spatial liver samples with multimodal 
information26 and aligned brain tissue slides in datasets that were pre-
viously inaccessible with state-of-the-art techniques. Moreover, we 
presented an analysis approach for spatiotemporal data. Finally, we 
generated a multimodal developmental pancreas dataset that enabled 
us to predict that epsilon and delta cells have a similar trajectory in the 
pancreas. Using moscot, we identified candidates for lineage-specific 
TFs and confirmed the role of NEUROD2 as an epsilon-cell regulator in 
islet cells derived from human iPS cells.

Moscot will simplify future OT applications in single-cell genom-
ics. With our unified API, incorporating other OT applications such 
as cross-modality data integration49 becomes easier. The current 
approach of using discrete OT is well-suited for the applications 
described in this study and for the extensions outlined above. How-
ever, discrete OT is in general not applicable to out-of-sample data 
points. To overcome this limitation, neural OT has proved useful for 
modelling development50–52 and perturbation responses51–53 as well as 
translating modalities52.

Given the widespread need to align cellular measurements in 
single-cell genomics, we anticipate that moscot will accelerate and 
simplify the analyses of large-scale multimodal datasets.
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Methods

The moscot algorithm
OT for single-cell genomics. OT is an area of mathematics that is con-
cerned with comparing probability distributions in a geometry-aware 
manner1. OT-based tools have been successfully applied to various 
problems that arise in single-cell genomics, including mapping cells 
across time points2,50–52,54–57, mapping cells from molecular to physical 
space3, aligning spatial transcriptomic samples4, integrating data across 
molecular modalities49,52, learning patient manifolds58 or mapping cells 
across different experimental perturbations53,59. Despite such success, 
the widespread adaptation of OT-based tools in single-cell genomics 
faces three key challenges.

First, most current OT-based tools are geared towards a single 
modality and cannot use the added information provided by mul-
timodal assays. Second, computation time and memory consump-
tion quadratically scale in cell number for vanilla OT and cubically 
for Gromov–Wasserstein extensions6. Such poor scalability limits the 
application of these tools to datasets that contain millions of cells. 
Third, the landscape of OT-based tools is split across programming 
languages and softwares that provide OT algorithms, which results 
in a fractured landscape of incompatible APIs. This makes it difficult 
for users to adapt and for developers to create new tools. By contrast, 
user-friendly and extensible APIs accelerate and facilitate research, as 
demonstrated through the scVI-tools framework60.

Moscot unlocks the full power of OT for spatiotemporal applica-
tions. Our method is built on three key design principles to overcome 
limitations and unlock the full potential of OT for single-cell applica-
tions: multimodality, scalability and consistency. For multimodality, 
all moscot models extend to multimodal data, including CITE-seq and 
multiome (RNA and chromatin accessibility) data. For scalability, we 
use both engineering and methodological innovations to overcome 
scalability limitations; in particular, we reduce computation time and 
memory consumption so that they are linear in the number of cells. 
For consistency, our implementation unifies temporal, spatial and 
spatiotemporal problems through a consistent API that interacts with 
the wider scverse8 ecosystem and is easy to use. Solving any of these 
problems in moscot follows a common pattern that translates the bio-
logical problem into an OT problem that is solved by the OTT backend12.

In the sections below, we describe how we realize these principles 
for temporal, spatial and spatiotemporal applications.

Moscot.time for mapping cells across time
Model rationale, inputs and outputs. Biologists frequently use time- 
series experiments to study biological processes such as development 
or regeneration that are not in a steady state. As current single-cell as-
says usually involve the destruction of cells, such experiments result 
in disparate molecular profiles measured at different time points. As 
previously suggested2, OT can be used to probabilistically link cells 
from early to late time points. We follow the WOT model in assuming 
that cells collectively minimize the distance they travel in phenotypic 
space and that cellular fate decisions are Markov; that is, cellular fate 
depends only on the current state and not on earlier history. Previous 
methods had limited scalability and were only applied to gene expres-
sion. We outline below how moscot.time overcomes these limitations.

Let X R∈ N D×  and Y R∈ M D×  represent pairs of state matrices for N and 
M cells observed at early (t1) and late (t2) time points, respectively. State 
matrices X and Y may represent, for example, gene expression (scRNA- 
seq) or chromatin accessibility (scATAC-seq) across D features (for 
example, genes or peaks). Optionally, the user may provide marginal 
distributions a Δ∈ N  and b Δ∈ M  over cells at t1 and t2 for probability 
simplex Δ a R a:= { ∈ | ∑ = 1}N

N
i
N

i+ =1 . Any previous cell-level information 
may be represented through the marginals, including cellular growth 
rates and death rates.

The key output of moscot.time is a coupling matrix P U a b∈ ( , ), where 
U(a,b) is the set of feasible coupling matrices, defined by

≔ ⊤U a b P R P a P b( , ) { ∈ | 1 = , 1 = } (1)N M
M N+

×

for constant one vector R1 = [1, . . . , 1] ∈N
N⊤ . We link t1 cells to t2 cells 

through the coupling matrix P; the ith row Pi,: represents the amount 
of probability mass transported from cell i at t1 to any t2 cell. The set 
U(a,b) contains the coupling matrices P that are compatible with the 
user-provided marginal distributions a and b at t1 and t2, respectively.

These definitions enabled us to formalize the aim of moscot.time: 
we sought to find a coupling matrix P U a b∈ ( , ) that couples t1 cells to 
t2 cells such that their overall travelled distance in phenotypic space is 
minimized.

Model description. To quantify the distance that cells travel in phe-
notypic space between time points, let c(xi,yi) be a cost function for 
early (xi) and late (yj) molecular profiles, representing, for example, 
gene expression or chromatin-accessibility state. Moscot enables the 
use of various cost functions (Supplementary Note 5). We use the cost 
function c to measure cellular distances in a modality-specific, shared 
latent space, for example, principal component analysis (PCA) for 
gene-expression data, latent semantic indexing (LSI) for ATAC data or 
corresponding models of scVI-tools60.

We evaluated the cost function c for all pairs of cells i j( , )∈
N M{1, . . . , } × {1, . . . , } to form the cost matrix C R∈ N M

+
× . Given the cost 

matrix C, which quantifies distances along the phenotypic manifold, 
we solved the optimization problem

∑P C P C P* = argmin ⟨ , ⟩ = argmin (2)P U a b P U a b ij ij ij∈ ( , ) ∈ ( , )

known as the Kantorovich relaxation of OT1, where P* is the optimal 
coupling matrix. When using P* to transport t1 cells to t2 cells, we accu-
mulated the lowest cost according to C. Subsequently, we refer to this 
type of OT problem as a W-type OT problem.

Introducing entropic regularization. In practice, the OT problem of 
equation (2) is usually not solved directly because it is computationally 
expensive, and the solution has statistically unfavourable properties. 
Instead, it is more common to consider a regularized version of the 
problem5,

P C P ϵH P= argmin ⟨ , ⟩ − ( ) (3)P U a b∈ ( , )

for entropy regularizer

∑H P P P( ) = − (log − 1) (4)ij ij ij

The parameter ϵ > 0 controls the regularization strength. Intuitively, 
entropic regularization introduces uncertainty to the solution in that 
it has a ‘blurring’ effect on P*. Mathematically, it renders the problem 
ϵ strongly convex, differentiable and less prone to the issue of dimen-
sionality.

The Sinkhorn algorithm for optimization. It can be shown that the 
solution to the regularized W-type problem of equation (3) has the 
form P u K v=ij i ij j for Gibbs kernel

≔K C ϵexp(− / ) (5)ij

and unknown scaling variables u v R R( , ) ∈ ×N M
+ + . Using this formula

tion, we rewrote the constraints P a1 =M  and P b1 =N  of equation (1) to  
produce

u Kv a v K u b( ) = , ( ) = ,⊙ ⊙ ⊤



where ⊙ denotes element-wise multiplication. Iteratively solving these 
equations gave rise to Sinkhorn’s algorithm:

≔ ≔ ⊤u
a

Kv
v

b
K u

, , (6)l
l

l
l

( +1)
( )

( +1)
( +1)

where the division is applied element-wise, and l is the iteration counter. 
Using this algorithm, the (unique) solution to the regularized W-type 
problem of equation (3), corresponding to the optimal coupling of 
t1 cells to t2 cells, was computed in time and memory quadratic in cell 
number5.

Adjusting the marginals for growth and death. Cells differenti-
ate, proliferate and die as the biological process unfolds between 
time points t1 and t2. The coupling matrix P*, computed by solving 
equation (3), reflects a mixture of these effects. To disentangle pro-
liferation and apoptosis from differentiation, we adjusted the left 
marginal a for cellular growth and death. Specifically, we followed 
WOT2 in defining

a
g x

g x
i N=

( )

∑ ( )
∀ ∈ {1, . . . , } (7)i

i
t t

j
N

j
t t

−

=1
−

2 1

2 1

where g R R: →D
+ corresponds to the expected value of a birth–death 

process g x e( ) = β x δ x( )− ( )  with proliferation at rate β x( ) and death at 
rate δ x( ). We estimated growth rates and death rates from curated 
marker gene sets. Note that moscot comes with predefined gene sets 
for mice and humans. Intuitively, our adjustment enabled t1 cells that 
are likely to proliferate or die to distribute more or less probability 
mass, respectively, to t2 cells. In the absence of cellular growth and 
death, every t1 cell would be allowed to distribute 1/N probability mass; 
thus, values greater or smaller than 1/N indicate proliferation or apop-
tosis, respectively. For the right marginal b, we assigned uniform 
weights b M= 1/j , j M∀ ∈ {1, . . . , }. Such an adjustment encouraged the 
optimal coupling matrix P* to reflect differentiation rather than pro-
liferation and apoptosis.

As it is difficult to adjust the hyperparameters of the birth–death 
problem, we also implemented a more intuitive and more easily adjust-
able estimation of the growth rates using

a
p q

c
= exp

−
(8)i

i i

where pi denotes a proliferation score and qi an apoptosis score, 
obtained using scanpy.tl.score_genes. c denotes a scaling parameter.

Unbalancedness to account for biased sampling. Our formulation of 
equation (3) enforced the prespecified marginals a and b to be exactly 
met by the solution P*. This is problematic from two perspectives.

First, the cells profiled at each time point usually correspond to a 
sample from the overall population. That is, small variations in cell-type 
frequencies across time points do not necessarily reflect underlying 
differentiation but might result from stochastic cell sampling. Exactly 
enforcing the marginals therefore implies that we encode the sam-
pling effect in the coupling, which confounds the actual differentia-
tion signal.

Second, our growth-adjusted and death-adjusted marginals of equa-
tion (7) are unlikely to reflect ground-truth proliferation or apoptosis 
rates, as they are estimated using noisy gene expression data and do 
not include any post-transcriptional effects. Thus, exactly enforcing 
these marginals propagates noise into the coupling matrix P*.

To avoid both pitfalls, we followed WOT2 to allow small deviations 
from the exact marginals in an unbalanced OT framework61. Specifically, 
we replaced the hard constraint P U a b∈ ( , ) with soft Kullback–Leibler 
(KL)-divergence penalties,

∣∣

⊤

P C P
ϵτ

τ
P a

ϵτ
τ

P b ϵH P

* := argmin ⟨ , ⟩ +
1 −

KL[ 1 ]

+
1 −

KL[( 1 )] − ( )
(9)

P R
a

a
M

b

b
N

∈ N M
+

×

which may be solved at the same computational complexity level using 
a generalization of Sinkhorn’s algorithm. The parameters τ τ, ∈ (0,1)a b  
are hyperparameters that determine the weight we gave to complying 
with the left and right marginals a and b, respectively. Values near one 
or zero correspond to strict or weak marginal penalties, respectively.

Multimodal data and scalability. The model we presented in the previ-
ous section is similar to the WOT2 model. However, WOT is only applied 
to unimodal data and has quadratic time and memory complexity in the 
number of cells, which largely prevented its application to atlas-scale 
temporal datasets that contain multiple modalities. This section pre-
sents how we extended the moscot.time model to overcome these 
limitations.

Application to multimodal data. We incorporated multimodal data 
in moscot.time through an adjusted definition of the cost function. 
Intuitively, we used a joint representation to render the computed 
distances more faithful to the phenotypic manifold. Specifically, given 
bimodal representations (X(1), X(2)) and (Y(1), Y(2)) at t1 and t2, respectively, 
we scaled these to have the same variance and measured distances in 
a concatenated space. In this example, (1) and (2) can represent any 
pair of modalities, for example, gene expression and ATAC data. This 
strategy naturally extends beyond two modalities to any number of 
jointly measured modalities, which makes moscot.time truly multi-
modal. Alternatively, moscot.time can be applied to representations 
computed using shared latent-space-learning techniques, for example, 
from variational autoencoders (VAEs)60,62,63.

Scalability through engineering-type innovations. Moscot.time 
builds on OTT12 in the backend, which offers three key engineering-type 
improvements: online evaluation of the cost function; GPU execution; 
and just-in-time compilation ( jitting).

Although memory complexity of the Sinkhorn algorithm is quadratic, 
it can be reduced to linear through online-cost matrix evaluation with 
minor assumptions on the cost function. The key observation is that 
the Sinkhorn algorithm only accesses the cost matrix C through the 
matrix–vector products Kv and ⊤K u (equation (6)), which are evaluated 
row by row. Thus, the cost function c can be queried on the fly for those 
cell–cell distances that are required to evaluate the current row of the 
matrix–vector product. Online evaluation reduces the memory com-
plexity so that it is linear in cell number (first improvement)12.

Second, although the Sinkhorn algorithm can, in principle, be run 
on GPUs to accelerate optimization, the quadratic memory complex-
ity prevents this in practice. Although CPUs can handle large memory 
consumption, GPUs are usually more limited (typically around 40 GB). 
Online memory evaluation (first improvement) renders GPU accelera-
tion possible, and OTT implements it in practice. Performing compu-
tations on GPUs accelerates the computation of cell–cell couplings in 
moscot.time (second improvement).

Third, jitting compiles Python code before it is executed for the first 
time, which further reduces computation time (third improvement).

Combining these three engineering-type innovations enabled 
moscot.time to run datasets that contain a few hundred thousand cells 
per time point with linear memory and quadratic time complexity on 
modern GPUs. However, if millions of cells per time point are involved, 
the quadratic time complexity becomes prohibitive.

Scalability through methodological innovations. To enable the  
application of moscot.time to datasets that contain millions of cells 
per time point, we must overcome the quadratic time complexity in 
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the number of cells. Following previous work13–15, we achieved this by 
imposing low-rank constraints on the set of feasible couplings. That 
is, requiring P U a b r∈ ( , , )  for non-negative coupling matrix rank r  
(Supplementary Note 3). Such regularization led to linear time and 
memory complexity in the number of cells. Low-rank Sinkhorn was 
implemented in OTT and available through moscot.time, which enables 
the application to future atlas-scale developmental studies.

Downstream applications. The coupling matrix P* optimally links t1 
cells to t2 cells for the cost function c. Moscot.time uses coupling to 
relate cellular states and to derive insights about putative driver genes. 
Thus, consider a t1 cell state P of interest, where P is the set of corre-
sponding cell indices. This state may represent, for example, a rare or 
transient cell population. Define the corresponding normalized indica-
tor vector p ∈ {0, 1}N  through

≔p
P

i P
1

| |
∈ , else 0 (10)i

for t1 cell i and |P|, the number of cells in state P. Following the original 
suggestion in WOT, we computed t2 descendants of cell state P by a 
push-forward operation of P,

q P p= (11)⊤

where q R∈ M
+  describes the probability mass that cell state P distributes 

to t2 cells. Using P rather than its transpose, we analogously computed 
ancestors of a cell state Q at t2. For a global view of cell-state transitions, 
we aggregated pull and push operations over all states into transition 
matrices, which we visualized using heatmaps or Sankey diagrams. We 
also correlated pull and push distributions with gene expression to 
uncover putative driver genes.

In summary, we used pull and push operations based on our com-
puted transport matrix P to recover putative ancestors and descend-
ants, respectively, of cell states of interest. In biological terms, for a 
given t1 cell state P, we interpreted its push distribution over t2 cells as 
the likelihood of P giving rise to these cells. Analogously, for a given 
t2 cell state Q, we interpreted its pull-back distribution over t1 cells as 
the likelihood of these cells to give rise to Q. Accordingly, we corre-
lated gene expression with the density of the pull-back distribution 
to pinpoint putative driver genes of transitioning into state Q. Using 
positive and negative correlations, such a strategy will reveal consist-
ently upregulated or downregulated genes, respectively, in cells that 
are likely to transition to state Q.

Coupling more than two time points. Following the WOT model, we 
coupled several time points by assuming that the state of tr + 1 cells 
depends only on the state of tr cells and not on any other earlier or later 
states. The index r runs over time points, r R∈ {1, . . . , }, for R time points. 
This Markov assumption enabled us to chain together time points by 
matrix multiplication. For time points t t{ , . . . , }R1  and corresponding 
sequential coupling matrices P P{ , . . . , }R(1) ( −1) , we linked t1 t1-cells to tr 
cells by matrix multiplication, P P P. . . R(1) (2) ( −1).

Feature-sparse OT maps using Sparse Monge. Sparse Monge47 is a 
method to perform (linear) OT in high-dimensional spaces while select-
ing only the most relevant genes per single cell. The concept builds on 
entropic maps, which enabled the estimation of deterministic Monge 
maps from discrete entropy-regularized OT couplings. Given the dual 
potential gε corresponding to the target cells (obtained using the out-
put of the Sinkhorn algorithm), the entropic map Tε for the squared 
Euclidean cost64 is defined as

( )
( )

T x
Y e

e
( ) =

∑

∑
(12)ε

n i
n

i
g Y x Y

n i
n g Y x Y

1
=1

( )− −

1
=1

( )− −

ε ε i i

ε ε i i

1 1
2

2

1 1
2

2

Sparse Monge extends the entropic map estimators to more general 
costs. That is, translation-invariant costs of the form c x y h x y( , ) = ( − ) 
with h R R: →d . In particular, this enabled us to choose sparsity-induc-
ing costs. While we refer to the original publication47 for a more com-
prehensive list of such costs, we here restrict it to the elastic L1 cost 
given as

h z z γ z( ) =
1
2

|| || + || || (13)2
2

1

with γ denoting the scaling regularizer. Thus, the entropic map estima-
tor is given as









∑T x x x p x y γ x y( ) = − ST − ( )( + sign( − ))ε γ

j

m
j j j

=1

where the soft threshold operator is defined as

⊙ST z γ z z( ) = (1 − /| |)γ +

and the weights are the factors as given in equation (12)

∶p x
h x y g ε

h x y g ε
( ) =

exp(−( ( − ) − )/ )

∑ exp(−( ( − ) − )/ )
.j

j
j

k
m k
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Moscot.space.mapping for spatial reference mapping
Model rationale, inputs and outputs. Techniques to simultaneously 
measure the spatial context of a cell and its transcriptional state have 
matured in recent years. In particular, spatial resolution, the field of 
view and the number of profiled transcripts have increased22,65. How-
ever, current approaches still fall short of measuring the full transcrip-
tome at true single-cell resolution. This experimental difficulty has 
fuelled the development of a range of computational tools that map 
dissociated single-cell reference datasets onto spatial coordinates, a 
problem known as spatial mapping23,66–68. Solving a spatial-mapping 
problem can provide two types of information.

The first is an annotation-centric perspective, whereby spatial map-
ping annotates cell types using single-cell-resolved spatial transcrip-
tomic technologies (for example, MERFISH69 and Seqfish70). The second 
is a feature-centric perspective, whereby spatial mapping imputes 
unmeasured gene expression in the spatial domain for techniques that 
do not achieve full transcriptome coverage (for example, MERFISH71 
and seqFISH+).

As previously suggested in NovoSpaRc3, a variant of OT can be 
used to probabilistically map reference cells into the spatial domain. 
We followed the NovoSpaRc model in assuming that cells in physi-
cal proximity tend to have similar gene-expression profiles. In other 
words, we assumed that there exists a (possibly noisy and imperfect) 
correspondence between physical and expression distances. Previous 
approaches faced several limitations, including scalability, applicability 
beyond gene-expression reference data and incorporation of spatial 
information in the mapping problem. With moscot.space.mapping, 
we produced a model that applies to both the sample-centric and 
feature-centric perspectives, scales to large datasets and incorporates 
multimodal information. Moreover, moscot.space.mapping explicitly 
makes use of spatial information when solving the mapping problem.

Let X R∈ N D× x and Y R∈ M D× y represent a pair of state matrices for N 
cells and M samples (for example, cells, spots, among others) observed 
in the dissociated reference and the spatial dataset, respectively. We 
assumed state matrices to represent gene expression for different 
numbers of genes, Dx for the dissociated reference and Dy for the spa-
tial dataset. We allowed further multimodal information in X, for exam-
ple, from joint RNA and ATAC readouts72–74. In addition, let C R∈Y M M

+
×  

encode spatial similarity among the M samples in Y (we define CX below). 



Depending on the spatial technology, CY contained either Euclidean 
distances among spatial locations or similarities in spatial graphs. 
Optionally, as in moscot.time, the user may provide marginal distribu-
tions a Δ∈ N and b Δ∈ M over cells in the dissociated reference and sam-
ples in the spatial dataset. In the context of moscot.space.mapping, 
these may represent sample-level uncertainties or estimated cell num-
bers per spot in the spatial dataset for barcoding-based spatial tech-
nologies.

The key output of moscot.space.mapping is a coupling matrix 
P U a b∈ ( , ) that links cells in the dissociated reference with samples in 
the spatial dataset. In particular, the ith row Pi,: represents the amount 
of probability mass transported from cell i in the reference to any spa-
tial sample j.

These definitions enabled us to formalize the aim of 
moscot.space.mapping: we sought to find a coupling matrix P U a b∈ ( , ) 
that related reference cells with spatial samples such that their distance 
in the shared transcriptome space is minimized while the correspond-
ence between molecular and spatial similarity is maximized.

Model description. To quantify the global distance between the refer-
ence and spatial datasets in the shared transcriptome space, we fol-
lowed moscot.time and defined a cost function c x y( , )i j  and associated 
cost matrix C R∈ N M

+
× . The matrix C quantified expression distance in 

raw gene space or a shared latent space computed using PCA or scVI. 
Note that the shared latent space was constructed using only those 
genes that had been measured in both the dissociated reference and 
the spatial dataset.

Gromov–Wasserstein for structural correspondence. In NovoSpaRc3, 
the authors showed how introducing a structural correspondence as-
sumption between gene expression and spatial information enhanced 
their ability to accurately solve the spatial-mapping problem. In particu-
lar, they assumed that cell pairs should be coupled such that there is a 
correspondence between distances in gene expression and distances in 
physical space. Following their suggestion, we encoded the structural 
correspondence assumption in a GW-type OT problem,

∑P L C C P P* := argmin ( , ) (14)P U a b ijkl ij
X

kl
Y

ik jl∈ ( , )

for spatial distance matrix C R∈Y M M
+

× , defined as above, and reference 
distance matrix C R∈X N N

+
× , quantifying molecular similarity among 

cells in the dissociated reference. To compute CX, we measured the 
expression distance among reference cells in a latent space defined 
using PCA or scVI. Correspondence between CX and CY was quantified 
entry-wise using the cost function L, which was set to the squared 
Euclidean cost by default. This cost was evaluated element-wise; that 
is, L C C C C( , ) = ( − )ij

X
kl
Y

ij
X

kl
Y 2.

Intuitively, the GW-type problem aimed to find a coupling matrix to 
maximize the structural correspondence between gene expression and 
spatial information. Note that individual genes may still show sharp 
gradients in the spatial domain, and the structural correspondence 
assumption applies to aggregated molecular profiles.

The moscot.space.mapping model. The moscot.space.mapping 
model is a combination of the W term, which quantifies the expres-
sion distance between the reference and the spatial dataset, and the 
GW term, which quantifies the structural correspondence between the 
reference and the spatial dataset, to create a FGW-type OT problem11,

∑
∑

P α L C C P P

α C P ϵH P

* argmin ( , )

+ (1 − ) − ( ),
(15)

P U a b ijkl ij
X

kl
Y

ik jl

ik ik ik

∈ ( , )≔

where we added entropic regularization at strength ϵ and introduced 
the weight parameter α to control the relative contribution of the 

W term and the GW term. The objective function contained the follow-
ing cost matrices:
•	 C R∈ N M

+
×  compares reference cells with spatial samples in terms of 

expression in shared genes.
•	 C R∈X N N

+
×  compares reference cells among each other in terms of 

gene expression.
•	 C R∈Y M M

+
×  compares spatial samples among each other in terms of 

spatial distance.
We optimized the moscot.space.mapping objective function of equa-

tion (15) using a mirror descent scheme6 (Supplementary Note 1). To 
account for uneven cell-type proportions between the reference and 
the spatial datasets, we optionally allowed for unbalancedness in the 
FGW-type problem75.

Multimodal data and scalability. The model presented here is an 
extension of the NovoSpaRc3 model, which is restricted to a certain 
cost function and only supports feature-centric interpretation. Fur-
thermore, NovoSpaRc is only applicable to unimodal data and has cubic 
time complexity and quadratic memory complexity in the number 
of cells, which largely prevents its application to atlas-scale spatial 
datasets and references that contain multiple modalities. This sec-
tion extends the moscot.space.mapping model to overcome these 
limitations.

Multimodal reference datasets. Multimodal data contains addi-
tional information about the molecular state of cell that can guide 
the mapping process. Although previous methods could apply map-
ping learnt from gene-expression data to other modalities collected 
for the same cells23, moscot.space.mapping is different because it 
makes use of multimodal information in the actual mapping prob-
lem. In other words, our approach uses multimodal information 
when learning the mapping rather than learning the mapping based 
on unimodal data and subsequently applying it to jointly captured  
modalities.

Consider a dissociated reference dataset with multimodal data 
matrices X(R) and X(O), where R refers to gene expression and O refers 
to another modality, for example, chromatin accessibility76 or surface 
marker expression77,78. We constructed the across-space cost matrix C 
and the spatial cost matrix CY as before but modified the construction 
of the reference cell cost matrix CX. Similar to moscot.time, we con-
catenated joint representations or used joint latent-space-learning 
techniques62,79,80 to obtain a single molecular representation and to 
measure distances in this representation to define CX. Our multimodal 
approach enabled the learning a more faithful correspondence between 
molecular similarity in the dissociated reference dataset and spatial 
proximity in the spatial dataset.

Atlas-scale spatial mapping. For the squared Euclidean loss func-
tion L and within-space cost functions CX and CY, we implemented 
moscot.space.mapping to have quadratic time and memory consump-
tion by exploiting low-rank properties of the Euclidean distance (Sup-
plementary Note 2). Similar to moscot.time, solving our FGW-type 
problem in the backend using OTT granted us GPU execution and jitting. 
Although this led to good performance on datasets of intermediate 
size (approximately 10,000 cells in reference and spatial datasets), the 
quadratic scaling became prohibitive for atlas-scale datasets.

To overcome the quadratic time and memory complexities, we made 
use of a recently proposed low-rank GW formulation14,15 (Supplemen-
tary Note 2), which extended the original low-rank Sinkhorn formula-
tion (Supplementary Note 3). This enabled moscot.space.mapping to 
relate hundreds of thousands of dissociated reference cells to spatial 
locations.

Downstream applications. Moscot.space.mapping supports both 
sample and feature-centric downstream analysis techniques.
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Annotation-centric perspective. In this perspective, we had cell-type 
or cell-state labels available in the reference, which we used to map to 
the spatial dataset. Suppose we are given a set of one-hot encoded 
reference labels through the matrix F ∈ {0,1}N S×  for S cell types or states. 
We obtained annotated cell types in the spatial domain using the matrix 

⊤G P F R= ∈ M S
+

× . For each spatial sample j, the row Gj,: contained the 
mapped cell-type likelihood for each of the S cell types or states. We 
could then assign discrete cell types to the spatial sample by either 
taking the label of the most likely match in the dissociated samples or 
by taking the most likely element of the transport matrix aggregated 
to cell type level.

Feature-centric perspective. In this perspective, we had more genes 
measured in the dissociated reference dataset than in the spatial data-
set. We aimed to use the solution of the mapping problem to impute 
spatial gene expression. This setting is relevant for spatial technologies 
that do not achieve full transcriptome coverage. Let Y R∈ M D× x∼

 denote 
inferred expression in the spatial domain; it holds

Y P X= (16)∼ ⊤

Analogous definitions hold for additional modalities collected in 
the dissociated reference; for example, we can use equation (16) to 
map chromatin accessibility or surface-marker expression into spatial 
coordinates.

To facilitate further downstream analyses of mapped spatial data, 
moscot.space.mapping interfaces with squidpy81, a spatial analysis 
toolkit that contains various visualization and testing capabilities. 
For example, squidpy can be used to test for the spatial enrichment 
of mapped cell-type annotations or to quantify spatial variability of 
imputed gene expression.

Moscot.space.alignment for aligning spatial transcriptomic data
Model rationale, inputs and outputs. The rapidly increasing number 
of spatial datasets poses substantial data-analysis challenges. In par-
ticular, faithful integration of spatial data across tissue slides, individu-
als and laboratories is currently an open problem that limits our ability 
to study tissue architecture across scales22,82. Different terms exist to 
refer to spatial integration problems; here we prefer to speak of spatial 
alignment. Solving a spatial alignment problem can serve two principal 
objectives: joint analysis and 3D construction.

Joint analysis aligns spatial datasets against a CCF82, which enabled 
us to gain statistical power by jointly considering multiple samples and 
enable new types of analysis, such as expression variability in space. 
Aligning data against CCFs will be a crucial step towards building spa-
tial atlases. For3D reconstruction, aligning sequential adjacent tissue 
sections enabled us to build faithful 3D tissue models.

As previously suggested in PASTE4, FGW-type OT11 can be used to 
probabilistically align spatial datasets. However, the previous PASTE 
method was targeted to small-scale 10x Visium datasets, and the 
authors considered a maximum of 4,000 spots per sample in their 
applications83. The scalability of PASTE is limited because it cannot 
run on GPUs and does not make use of entropic regularization, jitting 
or recent low-rank formulations of FGW-type OT. Furthermore, PASTE 
is limited to adjacent Visium tissue slides from the same individual 
because it cannot handle varying cell-type proportions. Moreover, 
the approach does not make use of multimodal molecular readout.

With moscot.space.alignment, we produced an approach that 
overcomes these limitations. In particular, moscot.space.alignment 
scales to large and diverse spatial datasets through GPU acceleration, 
entropic regularization6, jitting84 and low-rank factorizations14,15. 
Our approach can integrate samples from different individuals 
with varying cell-type proportions through an unbalanced for-
mulation and applies to spatial technologies beyond 10x Visium, 
including assays that use in situ sequencing or situ hybridization. 

Furthermore, our approach makes use of multimodal information if  
available.

Let X R∈ N D× x and Y R∈ M D× y represent a pair of state matrices for N 
and M spatial samples observed in two spatial datasets. We refer to X 
and Y as the left and right datasets, respectively. We assumed that state 
matrices represent gene expression for varying gene numbers Dx and 
Dy. Optionally, we allowed additional multimodal readout at both left 
and right datasets. In addition, let C R∈X N N

+
×  and C R∈Y M M

+
×  encode 

spatial similarity among the N samples in X and the M samples in Y, 
defined through, for example, Euclidean distance in space or simi-
larities in spatial graphs22,81. Optionally, as in previous moscot models, 
the user may provide marginal distributions a Δ∈ N  and b Δ∈ M   
over spatial samples in left and right datasets. In the context of 
moscot.space.alignment, these may represent sample-level uncertain-
ties or estimated cell numbers per spot for barcoding-based spatial 
technologies85–87.

The key output of moscot.space.alignment is a coupling matrix 
P U a b∈ ( , ) that links spatial samples across the two datasets. In par-
ticular, the ith row Pi,: represents the amount of probability mass trans-
ported from spatial sample i in the left dataset to any spatial sample j 
in the right dataset.

These definitions enabled us to formalize the aim of 
moscot.space.alignment: we sought to find a coupling matrix 
P U a b∈ ( , ) that relates spatial samples across left and right datasets 
such that their distance in the shared transcriptome space is minimized 
while the correspondence between spatial arrangements is maximized.

Model description. To quantify the global distance between left  
and right datasets in the shared transcriptome space, we followed pre-
vious moscot models and defined a cost function c x y( , )i j

 and associ-
ated cost matrix C R∈ N M

+
× . The matrix C quantifies expression distance 

in a shared latent space computed using PCA or scVI60. Using the tran-
scriptome–cost matrix C in the W term and the spatial–cost matrices 
CX and CY in the GW term, we defined a FGW-type OT problem as for 
moscot.space.mapping (equation (15)) and solved it using the mirror 
descent scheme (Supplementary Note 1). For samples with varying 
cell-type proportions, we optionally allowed for unbalancedness.

Multimodal data and scalability. We included additional multimodal 
data collected at left and right datasets in the W term. In particular, we 
followed moscot.time and used concatenated representations or joint 
latent space learning techniques.

We used the same scalability improvements as for 
moscot.space.mapping. In particular, we achieved fast runtimes on 
datasets of intermediate size through GPU acceleration and jitting. 
For atlas-scale left and right datasets, we used low-rank factoriza-
tions to achieve linear time and memory complexity (Supplementary  
Note 2).

Downstream applications. Moscot.space.alignment supports both 
joint analysis of several spatial datasets in a CCF and 3D reconstruc-
tion of adjacent tissue sections through different alignment policies.

For joint analyses of several spatial datasets, we relied on a pre
defined CCF. To define such a CCF, one may either use a dedicated  
computational method or manually designate a spatial sample  
to serve as the CCF. Given a CCF X R∈ N D× x  and R query datasets 
Y R r R∈ ∀ ∈ {1, . . . , }r M D( ) ×r r , moscot.space.alignment solves a star- 
policy alignment problem whereby each query Y(r) Y r( ) is aligned against 
the central CCF X. To enable joint analysis of all query datasets Y(r) in 
terms of CCF spatial coordinates, we computed the projection

∼
Y P Y= ,

r r r( ) ( ) ( )

for projected gene expression Y R∈
r N D( ) × r∼

 and corresponding coupling 
matrix P R∈r N M( )

+
× r . Solving the star-policy alignment problem with 



moscot.space.alignment and projecting into CCF coordinates enabled 
the joint analysis of all spatial query samples Y Y{ , . . . , }R(1) ( ) .

For 3D reconstruction of adjacent tissue sections, let X R∈r N D( ) ×r r  
represent gene expression of slide r for Nr spatial samples and Dr genes. 
Furthermore, let Z R∈r N( ) ×2r  represent the corresponding spatial coor-
dinates. We considered R sequential slides, r R∈ {1, . . . , }. To align their 
coordinate systems, moscot.space.alignment solves a sequential 
policy alignment problem, whereby each dataset X(r) is aligned against 
the next dataset X(r + 1) in the sequence. Given the corresponding cou-
pling matrix P R∈r N N( )

+
×r r+1, slide (r + 1) coordinates are transformed 

into slide r coordinates using

Z P Z= (17)r r r( +1) ( ) ( +1)͠

for Z͠ R∈
r N( +1) ×2r . We refer to this as the warping transformation because 

it nonlinearly warps Z(r + 1) coordinates onto Z(r) coordinates. Alterna-
tively, moscot.space.alignment implements the previously suggested 
affine-linear transformation. We recommend the warping transforma-
tion whenever nonlinear effects between adjacent slides are expected. 
By designating any reference slide r*, all other coordinate systems can 
be transformed into Z(r*) coordinates through sequential application 
of either the warping or the affine transformation.

In either case of the alignment problem, it is possible to further refine 
the alignment by solving an additional W-type problem on the spatial 
coordinates.

We interfaced with squidpy81 for further joint analyses of several 
spatial datasets in a CCF. For example, squidpy can be used to study 
expression heterogeneity at a defined spatial location in the CCF across 
several spatial datasets.

Moscot.spatiotemporal to decipher spatiotemporal variation
Model rationale, inputs and outputs. Cellular state-change processes, 
including development, regeneration and reprogramming, do not 
unfold in isolation in single cells but in constant communication with 
the surrounding tissue22. Recent experimental advancements have 
enabled spatially resolved gene expression measurements at near 
single-cell resolution across developmental processes. In particular, 
the Stereo-seq10 technology has been applied to various developmen-
tal settings10,33,88–90. These experiments produce a time series of gene 
expression measurements (as in moscot.time), with additional spatial 
readouts at each time point. With moscot.spatiotemporal, we devel-
oped a method to map cells across time points while preserving spatial 
organization, which enabled us to decipher spatiotemporal variation 
during complex cell-state changes.

Let X R∈ N D×  and Y R∈ M D×  represent pairs of state matrices for N and 
M spatial samples observed at early (t1) and late (t2) time points, respec-
tively. In addition, as stated for moscot.space.alignment, let C R∈X N N

+
×  

and C R∈Y M M
+

×  encode spatial similarity among the N samples in X and 
the M samples in Y. Optionally, as in previous moscot models, the user 
may provide marginal distributions a Δ∈ N  and b Δ∈ M  over cells at t1 
and t2. In the context of moscot.spatiotemporal, these usually corre-
spond to cellular growth and death rates.

The key output of moscot.spatiotemporal is a coupling matrix 
P U a b∈ ( , ) that links samples across the two time points. In particular, 
the ith row Pi,: represents the amount of probability mass transported 
from the t1 sample i to any t2 sample j.

These definitions enabled us to formalize the aim of 
moscot.space.mapping: we sought to find a coupling matrix P U a b∈ ( , ) 
that relates t1 and t2 samples such that their distance in the shared tran-
scriptome space is minimized. At the same time, the correspondence 
between spatial arrangements is maximized.

Model description.  We used identical definitions to the 
moscot.space.alignment model, where t1 samples play the part of the 
left dataset and t2 samples play the part of the right dataset. We adjusted 

the marginals to accommodate cellular growth and death rates as in 
the moscot.time model, and we optionally allowed for unbalancedness 
to handle noisy estimates.

Multimodal data and scalability. We used the same methods as in 
moscot.space.alignment to include additional multimodal readout at 
t1 and t2, and we used the same strategy to scale our model to atlas-scale 
datasets (Supplementary Note 2).

Downstream applications. We extended our model to more than two 
time points using the same method as in moscot.time, and we sup-
ported all downstream analysis functions introduced for moscot.time. 
We extended the computation of ancestor and descendant probabilities 
to spatial regions. That is, the cell state P of interest in equation (10) may 
now represent a spatial region. Thus, moscot.space.mapping enables 
spatial regionalization to be studied throughout cell-state changes.

We interfaced with squidpy81 for further downstream analyses of 
spatiotemporal variation. For example, squidpy can be used to study 
the spatial enrichment of a mapped cell state of interest across the 
temporal axis.

Datasets
Temporal analysis. Unless stated otherwise, computations were done 
using SCANPY19 with default parameters. To obtain driver features 
for a subset of cells, for example, for a certain cell type, we correlated 
(Pearson’s or Spearman’s) the density of the pull-back distribution of 
the considered cell type with the corresponding feature, for example, 
(processed) gene expression. To compute target genes of a TF, we cor-
related the density of the push-forward distribution of the expression 
of the TF with all genes and identified highly correlated genes as target 
genes. The code is available at GitHub (https://github.com/theislab/
moscot-framework_reproducibility).

Moscot.time on a mouse embryogenesis atlas. The mouse embryo-
genesis atlas is a collection of data from different sources7,91–94. These 
datasets were preprocessed and annotated7, and we downloaded them 
as Seurat objects from http://tome.gs.washington.edu/.

The authors of the study showed how their embedding computation 
successfully handled batch effects; therefore, we followed their pipeline 
and reproduced these representations by selecting genes using the 
FindVariableFeatures of Seurat (v.3) and batch-correcting the data 
using FindIntegrationAnchors95. For further analysis using moscot.time 
in Python, the Seurat objects were transformed into AnnData96 objects 
using SeuratData97. For the displayed UMAP98 of the E8.0–E8.25 pair of 
time points, we used the 30-dimensional Seurat PCA latent space and 
a kNN graph with k = 15.

Comparison of the memory and runtime benchmark between 
moscot.time and WOT. To investigate method scalability, we ran a 
memory and runtime benchmark. For this, we subsampled from the 
E11.5–E12.5 time point pair, which had the largest number of cells out 
of all time point pairs: 455,124 cells at E11.5 and 292,726 cells at E12.5. 
We generated 11 subsets of increasing size, each containing the same 
number of cells at E11.5 and E12.5, with a step size of 25,000 cells, up to 
a maximum of 275,00 cells in either time point.

We compared the performance of three different approaches: WOT, 
moscot.time and low-rank moscot.time. For moscot.time, we evaluated 
the cost function on the fly (online evaluation) to achieve linear mem-
ory complexity. For low-rank, we chose rank 2,000 because it showed 
the best accuracy scores in the low-rank comparison (see below). For 
the memory benchmark, we ran all algorithms on CPUs, as GPU mem-
ory benchmarking is difficult, and memory consumption is likely to 
be very similar on CPUs. For the runtime benchmark, we ran the 
moscot.time variants on GPUs, but had to run WOT on CPUs as it cannot 
make use of GPU acceleration. For entropic regularization of both WOT 

https://github.com/theislab/moscot-framework_reproducibility
https://github.com/theislab/moscot-framework_reproducibility
http://tome.gs.washington.edu/
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and moscot.time, we chose ϵ = 0.005. For low-rank moscot.time, we 
chose ϵ = 0.0001. For the left and right unbalancedness parameters τa 
and τb, respectively, we choose τ = 0.9a  for full rank and τ = 0.09a  for low 
rank, and τ = 0.99995b  for both low rank and full rank. For these unbal-
ancedness parameters, the apoptosis rates fell within the predefined 
window of 2–4%.

Accuracy benchmark between moscot.time and TOME. We com-
pared the accuracy of the cell transitions inferred using moscot.time 
and TOME7. TOME is a kNN-based algorithm that was developed spe-
cifically for this dataset. For each t2 cell, TOME finds the k = 5 nearest 
neighbours at t1 and treats these as putative ancestors. By aggregating 
over cell states at both time points, TOME computes weighted ancestor 
and descendant relationships on the cell-state level. To improve robust-
ness, TOME median-aggregates the inferred edges over 500 randomly 
subsampled cell sets, each containing 80% of all cells.

Of note, TOME computes neighbourhood relationships in a 3D UMAP 
space despite the known pitfalls of low-dimensional nonlinear rep-
resentations99–101. In particular, low-dimensional embeddings such 
as UMAP or t-SNE102 do not preserve global data topology well103,104; 
trajectories inferred in such spaces are prone to suffering from projec-
tion artefacts. Moreover, TOME lacks the concept of probability mass 
conservation, whereby a considerable number of cells at t1 can remain 
without descendants. By contrast, moscot.time computes cell–cell dis-
tances in a higher dimensional latent space (30-dimensional PCA in this 
application), a crucial feature to faithfully describe the data topology 
of complex developmental state changes. Moreover, moscot.time is a 
probabilistic approach equipped with a notion of mass conservation 
grounded on OT.

We applied both moscot.time and TOME to all time-point pairs. Again 
we chose τb fixed at 0.9995 and tuned τa such that the resulting apop-
tosis rates are biologically plausible (see the section ‘Growth-rate com-
parison’). For moscot.time, we aggregated the cell-level couplings to 
cell-state transition rates using the pull-back operation of the corre-
sponding cell state as described above. These cell-state transition rates 
correspond to the weighted cell-state transition edges obtained using 
TOME, which enabled direct comparison of both approaches.

Metrics for the accuracy benchmark for germ-layer and cell-type 
scores. We developed two metrics to evaluate the accuracy of obtained 
cell-state transitions: one germ-layer metric and one cell-type metric. 
First, our germ-layer metric aggregated cell states into germ layers and 
considered transitions within and across germ layers as correct and 
incorrect, respectively. This metric was motivated by the observation 
that cells typically do not cross germ layers105. A prominent exception to 
this rule is the neural crest, for which a transition from neuroectoderm 
into osteoblast progenitors (mesoderm) was allowed106. We followed 
the original publication7 in classifying cell types into neuroectoderm, 
surface ectoderm, endoderm and mesoderm. As in the original study, 
we excluded transitions between cell types that could not be unam-
biguously assigned to a germ layer and transitions with edge weights 
below 0.05.

Second, our cell-type metric compared every predicted transition 
with a curated set of allowed transitions. To curate the set of allowed 
transitions during mouse embryogenesis, we conducted an extensive 
literature search for all 89 cell types present in the data to identify 
previously reported ancestor and descendant states (Supplementary 
Table 2).

We computed accuracy scores for the germ-layer and cell-type met-
rics by dividing the weighted sums over all transitions that satisfied 
germ-layer boundaries and cell-type restrictions by the weighted sum 
over all transitions included in the evaluation, whereby weights are 
given by the edge weight. We mean-aggregated accuracy scores for 
pre-gastrulation (E3.5–E6.5), gastrulation (E6.5–E8.5) and organo-
genesis (E8.5–E13.5), for which we combined the accuracy scores of 

different time pairs by weighting by the amount of cell types for the 
starting time point.

Embedding robustness comparison. We compared the performance 
of moscot.time and TOME on two additional embeddings. First, we 
computed a PCA embedding on highly variable genes, identified  
using scanpy.pp.highly_variable_genes with default parameters. On 
these highly variable genes, we then ran scanpy.tl.pca to obtain the 
30-dimensional PCA embedding used in moscot.time. TOME requires 
a 3D UMAP embedding. Hence, we used scanpy.tl.umap with default 
parameters and supplied a neighbourhood graph computed in the 
PCA embedding as input.

Second, we computed a scVI embedding. We split the data into the 
three stages that corresponded to pre-gastrulation, gastrulation and 
organogenesis. For each of these stages, we combined all time points 
into a single AnnData object on which we ran scVI. We used scanpy to 
compute highly variable genes with flavor=seurat_v3 and subsetted to 
2,000 highly variable genes for pre-gastrulation, 3,000 for gastrula-
tion and 5,000 for organogensis. For each stage, we trained a model 
with default parameters apart from using n_layers=2, n_latent=30, 
gene_likelihood=‘nb’ in scvi.model.SCVI. Notably, we did not perform 
any type of batch correction. We used the resulting 30-dimensional 
embedding directly in moscot.time, whereas for TOME, we ran scanpy.
tl.umap to obtain the required 3D UMAP embedding.

We then ran moscot.time and TOME as outlined above, using germ- 
layer and cell-type scores as evaluation criteria. To obtain mappings 
with realistic apoptosis rates, for moscot.time, we tuned the left unbal-
ancendess parameter τa for each time point pair and latent representa-
tion to fall within the previously described windows (see also the 
section ‘Growth-rate comparison’).

Consistency checks with WOT. We compared moscot.time with WOT 
on the smaller time point pairs corresponding to pre-gastrulation and 
gastrulation stages, for which we could run WOT without memory 
issues. We ran both methods using the same entropic regularization 
and unbalancedness parameters and provided the same initial growth 
rates and median-normalized both cost matrices (default in WOT). 
We ran both methods until convergence and compared the resulting 
transport maps.

Comparison of full-rank to low-rank moscot.time for different 
choices of ranks. We compared full-rank to low-rank moscot.time, 
considering ranks 10, 100, 1,000 and 2,000. We ran the full-rank version 
with the exact same parameters as in the TOME comparison above. For 
the same entropic regularization parameter ϵ, low-rank transport maps 
had higher levels of entropy compared with full-rank maps. We used a 
smaller ϵ of 0.0001 for low-rank approaches to counteract this effect. 
To obtain a good choice for the low-rank gradient step size γ, we per-
formed a grid search and found that γ = 500 was a suitable value. 
Full-rank moscot.time was run until convergence, whereas low-rank 
moscot.time was run with a fixed number of 1,000 iterations. We kept 
the right unbalancedness parameter τb fixed at 0.99995 and tuned the 
left unbalancedness parameter τa such that the apoptosis rates fell 
within the predefined ranges for the different stages of embryonic 
development107,108 (Supplementary Table 3).

Growth-rate comparison. Beyond comparisons on the germ-layer 
and cell-type levels, we wanted to evaluate how moscot.time and TOME 
compared on the single-cell level. However, the TOME method does 
not output single-cell transitions; it only reports aggregated cell-type 
transitions. Thus, to still have a baseline, we implemented a variant of 
the TOME approach, which we call clTOME, whereby we collected the 
neighbours that TOME identifies and aggregated them into a single-cell 
transport matrix. Again, following the original approach, we increased 
robustness by repeating the process over 500 randomly subsampled 



datasets, each containing 80% of the original cells. As subsampling 
also affected the cells of the later time point, we normalized the 
data such that columns in the early-to-late cell transition matrix 
summed to one. In other words, each t2 cell received the same unit mass 
of incoming transition probability. We did this to make the TOME and 
moscot.time transport matrices comparable, as the column-sum of 
the moscot.time transport matrix is close to uniformity because of the 
high unbalancedness parameter τb of 0.99995. This interpretation of 
the kNN approach enabled us to define cell–cell coupling matrices in 
clTOME. Analogous to moscot.time, we used pull and push operations 
(see section ‘moscot.time for mapping cells across time’) to compute 
ancestors and descendants.

We computed cell-level couplings across time points using 
moscot.time and clTOME, excluding extraembryonic tissues to avoid 
introducing additional variance from the experimental protocol. For 
moscot.time, we did not initialize the growth rates using marker genes 
to enable a fair comparison with clTOME, which does not support such 
initialization. Instead, we ran moscot.time with uniform marginals and 
used unbalancedness to learn growth rates de novo. As before, we set 
τ = 0.99995b  and chose τa such that the resulting predicted fraction of 
apoptotic cells lies within a biologically reasonable range107,108 (Sup-
plementary Table 3). For both methods, we calculated growth rates 
through the left marginal (row sum) of the corresponding coupling 
matrix, P∑j ij. To avoid overcrowding our histograms of growth rates 
per cell type, we only showed the five cell types with most cells per time 
point.

An important aspect of interpreting trained OT growth rates (mar-
ginals) with biological growth rates is adjusting for the number of cells 
in the embryo. Specifically, we computed the change in population 
size between two time points, s e e= | |/| |1 2  where e| |1  and e| |2  represent 
the estimated cell number at early and late embryo stages, respectively. 
Next, we scaled the mean growth rate of t1 cells by multiplying with  
the average number of ancestors s to obtain biologically interoper
able growth rates. To obtain an estimate of the apoptosis rate, we cal-
culated, for each cell, the difference between 1 and the scaled growth 
rate gi. If for a particular cell gi is smaller than 1, on average (1 – gi) of 
this cell dies.

By summing over these differences for all t1 cells for which the scaled 
growth rate was smaller than 1, we calculated the predicted number of 
dying cells at t1. We divided the sum by the total number of t1 cells in the 
dataset to obtain estimated apoptosis rates. We ran the above calcula-
tions independently for all time points for moscot.time and clTOME. 
We chose the target apoptotic range by combining information from 
various publications18,107–111. We chose the target apoptotic range for 
pre-gastrulation to be 10–15% apoptotic cells, 4–6% for gastrulation 
and 2–4% for organogenesis. For the time pair E8.5a–E8.5b, for which 
not real time passes but there is a transition in experimental methods, 
we aimed for a relatively high apoptosis rate of 10–40% to allow for the 
correction of sampling biases.

Correlating predicted growth rates with gene-set-based growth 
rates. To validate predicted growth rates, we correlated them with cell- 
cycle scores computed on the basis of marker gene expression using 
scanpy through scanpy.tl.score_genes. In brief, the scanpy implementa-
tion of gene scoring follows the original suggestion in Seurat (v.1)112: it 
averages over genes in the supplied gene set, normalized by the average 
expression of a reference set of genes. For this comparison, we initial-
ized marginals uniformly so that our algorithm was not aware of growth 
rates and we could use this information for validation.

We applied this strategy to a different dataset that comprised repro-
gramming mouse embryonic fibroblasts2. This dataset was better suited 
for the growth-rate comparison for two reasons. First, the gene set we 
used to score the cell cycle based on scRNA-seq data was tailored to 
mouse fibroblasts and haematopoietic stem cells113. Applying this gene 
set to the mouse embryogenesis atlas gave haematopoietic lineages 

consistently higher scores than other cell types, which contradicted 
previous biological findings114. Second, the mouse embryogenesis atlas 
represents an in vivo setting, for which each time point corresponds to 
a different individual, thereby leading to strong variations in cell-type 
proportions across time points, which are not driven by cellular growth 
and death but by cellular sampling effects. In particular, extraembry-
onic tissues were subject to large systematic sampling biases, most 
likely due to variations in sample handling.

By contrast, the mouse embryonic fibroblast reprogramming data-
set was better suited given our gene set, and, as an in vitro setting, 
contained fewer biases in cell-type frequencies driven by cell sampling. 
We ran moscot.time using an entropic regularization of 0.0005 and 
unbalancedness parameters τ = 0.98a  and τ = 0.99995b . We then com-
puted clTOME growth rates on the same dataset. We computed the 
cell-cycle scores using scanpy.tl.score_genes through the implementa-
tion of moscot with the gene set determined for mouse fibroblast and 
haematopoietic stem cells.

Comparison in terms of driver-gene correlations. To further assess 
the cell-level couplings predicted by moscot.time and TOME, we rea-
soned that high correlations between ancestor probabilities and known 
driver genes for a cell state are indicative of the success of the method. 
Thus, for the cell states described in the main text, we computed the 
ancestor distributions predicted using moscot.time and clTOME (see 
the section ‘moscot.time for mapping cells across time’). To exclude the 
influence of driver genes involved in unrelated differentiation events, 
we restricted the correlation computation to known progenitor popula-
tions. For each pulled cell state, we curated a list of known driver genes 
(Supplementary Table 4), filtered the list to contain only highly variable 
genes at the corresponding time point and imputed their expression 
using the decoder output of scVI with get_normalized_expression. After 
filtering to highly variable genes, we retained 36 genes for definitive 
endoderm, 18 genes for allantois, 39 genes for the first heart field and 
106 genes for the pancreatic epithelium. We calculated Spearman’s cor-
relation values between these imputed expression values and predicted 
ancestor distributions using scipy.stats.spearmanr115.

Metacell analysis. Another way to accelerate the computation of 
mappings is to aggregate cells into metacells. To investigate the per-
formance of this possibility, we computed metacells using the popular 
Metacell-2 algorithm21 on E9.5 cells. However, we found that for the rare 
cell state primordial germ cells (30 cells or 0.03% of the population), 
no metacell was created, which made the inference of progenitors and 
ancestors of this cell state impossible.

We also computed metacells on the E10.5–E11.5 pair of time points 
and used moscot for temporal mapping, both on the single-cell and 
metacell levels. For this, we adjusted the marginals, making them pro-
portional to the number of cells in the corresponding metacell. We 
chose ϵ τ= 0.005, = 0.99995b  and τ = 0.8a  such that the resulting apop-
tosis rate was in the range of 2–4%. To enable a fair comparison with 
moscot ran on single cells, we mapped the metacell coupling matrix 
back to the level of single cells. We then evaluated mapping accuracy 
using the curated cell-type and germ-layer transition scores as well as 
the correlation of E11.5 pancreatic epithelium ancestor probabilities 
with known driver genes for pancreas development. For the curated 
cell-type and germ-layer transitions, we set the threshold of transitions 
to consider to zero because the transition matrix from the metacell 
analysis contained many small entries.

Moscot.time on multimodal pancreas development
Dataset generation. Embryonic pancreata from NVF homozygous mice 
were collected and pooled together (8 pancreata from E14.5 and 11 pan-
creata from E15.5 for the first experiment (exp-1), and 10 pancreata from 
E15.5 and 10 pancreata from E16.5 for the second experiment (exp-2)).  
Trypsin (0.25%) was added to the samples for 5 min on ice and then 
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incubated at 37 °C for 10 min. The single-cell samples were centrifuged 
at 1700 r.p.m. (290g) for 5 min at 4 °C. After removing the supernatant, 
cells were counted. Next, 5 µl rat IgG2a K isotype control (eBioscience, 
12-4321-42) and anti-mouse CD326 (EpCAM) PE (eBioscience, 12-5791-
81) was used for 1 × 106 cells (100 µl total volume). Samples were stained 
for 30 min at 4 °C following staining with DAPI to detect dead cells. After 
washing twice and resuspending in FACS buffer (PBS, 1% BSA and 0.5 mM 
EDTA), the single-cell samples were loaded for FACS analysis. The fol-
lowing gating strategy was used: main population > single-cells > living 
cells (DAPI–) > EpCAM+ (PE+) and NGN3+ (FITC+)/NGN3– (FITC–) cells. 
Sorted cells were pooled in a 2:1 (EpCAM+NGN3+: EpCAM+NGN3–) ratio 
and immediately used for isolation of nuclei.

To isolate nuclei, a low-input nucleus isolation protocol adapted 
from 10x Genomics was performed. In brief, sorted cells were washed 
once with 1 ml PBS + 1% BSA, counted on the basis of Trypan blue stain-
ing and centrifuged. Subsequently, the washed cell pellet was resus-
pended in chilled lysis buffer (50 μl per sample) and placed on ice for 
4 min. Then, wash buffer (500 μl per sample) was added and nuclei 
were centrifuged. To gradually change from wash to diluted nucleus 
buffer, cells were washed once in a 1:1 mixture of wash buffer and diluted 
nucleus buffer and subsequently once with pure diluted nucleus buffer. 
The washed isolated nuclei were then resuspended in 7–10 μl diluted 
nucleus buffer and were, after quality control and counting, immedi-
ately used for single-cell multiome library preparation with a target 
recovery of 10,000 cells.

Libraries were prepared using the Chromium Next GEM Single Cell 
Multiome ATAC + Gene Expression Reagent Bundle (10x Genomics, 
1000283) according to the manufacturer’s instructions. Libraries 
were sequenced on an Illumina NovaSeq6000 platform following the 
recommendations from 10x Genomics. Raw reads from both experi-
ments were jointly aligned to the GRCm38 mouse genome with Ensembl 
release 102 annotations and pre-processed using the 10x Genomics 
CellRangerARC pipeline (v.2.0.2) for downstream analyses.

Preprocessing. We preprocessed the samples independently for gene 
expression and chromatin accessibility. Peaks were taken from the 
CellRanger output independently for each sample and subsequently 
merged.

With respect to gene expression, all cells with a mitochondrial gene 
fraction higher than 0.025 in E14.5 or higher than 0.02 in E15.5 were 
removed in exp-1. For exp-2, all cells in E15.5 with a mitochondrial gene 
fraction higher than 0.015 were removed, and the threshold for E16.5 
was set to 0.02. Moreover, for exp-1, cells with fewer than 4,000 counts 
or more than 30,000 counts were removed in E14.5, and cells with fewer 
than 5,000 counts or more than 40,000 counts were removed in E15.5. 
For exp-2, the lower thresholds for both time points were chosen to 
be 3,000, whereas cells with a total gene count of at least 60,000 and 
70,000 were removed for time point E15.5 and E16.5, respectively. All 
cells with fewer than 2,300 genes expressed were filtered out for E14.5 
(exp-1). The analogous thresholds for E15.5 (exp-1), E15.5 (exp-2) and 
E16.5 (exp-2) were set to 2,700, 2,000 and 2,000, respectively.

Concerning ATAC modality, all cells in E14.5 (exp-1) with nucleome sig-
nals lower than 0.35 or higher than 1.75 were removed. All cells with tran-
scription start site enrichment scores lower than 2.5 or higher than 7.5 
were filtered out. Cells were also removed if their total open-chromatin 
region count was below 4,000 or above 150,000. Analogously, the 
minimum nucleosome signal was set to 0.3, 0.35 and 0.25 for E15.5 
(exp-1), E15.5 (exp-2) and E16.5 (exp-2), respectively, whereas the upper 
threshold of the nucleosome signal was chosen to be 1.75, 1.5 and 1.4, 
respectively. Moreover, the lower threshold of the transcription start 
site enrichment score was set to 2.75, 2.5 and 2.5 for E15.5 (exp-1), E15.5 
(exp-2) and E16.5 (exp-2), respectively, whereas the upper one was set to 
10.5, 8 and 7.5, respectively. The lower total peak counts threshold was 
set to 4,000 for E15.5 (exp-1), E15.5 (exp-2) and E16.5 (exp-2), whereas 
the upper one was set to 100,000, 160,000 and 170,000, respectively.

After concatenation of the two samples, genes that were detected 
in fewer than 20 cells were filtered, which resulted in 20,244 genes.

Doublets were identified using a mean prediction of multiple 
doublet-detection methods. We used Scrublet116, scDblFinder117, 
DoubletDetection118, scds119, SOLO120 and DoubletFinder121. To iden-
tify doublets based on ATAC counts, we used AMULET122. Whenever at 
least three single methods out of the seven methods rated a cell to be 
a doublet, we considered the cell as doublet. In total, 12.60% doublets 
were identified in sample E14.5 (exp-1), 10.73% doublets in E15.5 (exp-1), 
16.68% doublets in E15.5 (exp-2) and 15.11% doublets in E16.5 (exp-2).

Subsequently, clustering in MultiVI62 embedding was repeatedly 
performed, and clusters with a large majority of identified doublets 
were removed.

Cell-type annotation. To construct a weighted nearest neighbour 
graph, an embedding of both modalities is needed. Therefore, be-
fore performing a PCA (50 dimensions) on the log1P-tranformed gene  
expression data, the count data were normalized using SCTransform123 
and cell-cycle genes and ambient genes were discarded. Ambient genes 
were identified using DropletUtils124. The ATAC data were processed by 
term frequency-inverse document frequency (tf-idf) normalization 
followed by singular-value decomposition using Signac, computing 
the first 50 singular components. Owing to a high correlation with the 
sequencing depth, the first and the fifth components were removed. 
Having computed respective embeddings for GEX and ATAC, we con-
structed a weighted nearest neighbour graph using MUON125 and used 
it for multimodal, unsupervised clustering. Unless stated otherwise, 
this is also the graph on which we computed UMAPs.

Annotation was performed on the basis of the expression of marker 
genes as reported in previous studies34,42,113,126–128 (Supplementary 
Table 9) and cell-cycle scores for the proliferating populations com-
puted using scanpy.tl.score_genes_cell_cycle. It is important to men-
tion that we identified a cluster branching off the Ngn3High population, 
which we found to express similar genes as a cluster called Fev+ epsilon 
as previously described34. In fact, neither the cluster reported in that 
study34 nor the cluster found in our new dataset has a substantially 
high expression of Fev (Supplementary Fig. 28). Hence, we labelled 
this cluster as epsilon progenitors.

To arrive at the finer resolution of cell types as shown in Fig. 3e, sub-
clustering was performed on the same neighbourhood graph (incor-
porating both modalities).

The moscot.time model. We computed the cost matrix defining the 
OT problem between E14.5 and E15.5 using the 30-nearest neighbours 
graph (computed with scanpy.pp.nearest_neighbors) on the MultiVI 
embedding to compute distances based on heat kernel diffusion (Sup-
plementary Note 5). Hence, this graph was constructed on a different 
embedding than the one we used for unsupervised clustering to reduce 
the bias to one embedding.

Two moscot models were run on the basis of the weighted nearest 
neighbour graph for which construction is described above. First, a 
model was run on the full dataset. The moscot.time model was run with 
default parameters, but a bit of unbalancedness was introduced by 
setting τ τ= = 0.99a b . In detail, the regularization parameter ϵ was set 
to 10–3 and the cost matrix was scaled by its mean. To guarantee con-
vergence, the number of iterations was increased to 107. Uniform mar-
ginals were chosen because the large abundance of highly proliferating 
ductal cells would have marginalized the influence of less-abundant 
cell types. It is also important to note that the dataset is FACS-sorted; 
therefore, proportions of initially sequenced cells are highly biased 
and do not reflect the true cell-type distribution. This also causes the 
final model to not predict descendants (ancestors) across one day (wall 
clock time). In effect, the directionality of the developmental process 
is kept, whereas its magnitude does not reflect ground-truth biological 
progress.



For the analysis of the endocrine branch, the OT solution was 
computed on a reduced dataset that only contained endocrine cells 
(alpha, beta, delta and epsilon) and their progenitors (cells labelled 
as Fev+ alpha, Fev+ beta, Fev+ delta, epsilon progenitors, Fev+, Ngn3High, 
Ngn3High cycling or Ngn3Low). Again, uniform marginals were chosen 
because the proliferation and apoptosis scores obtained from Tem-
poralProblem.score_genes_for_marginals were almost constant. The 
OT solution was computed using standard parameters provided by 
moscot.

Studying the influence of the embedding and cost function.  
To demonstrate the stability of the OT predictions, we ran moscot with 
different hyperparameters, including the choice of the latent em-
bedding (incorporating only one modality, that is, PCA space of gene 
expression, VAE embedding of gene expression (scVI space129), LSI 
space of ATAC, VAE embedding of peaks (PoissonATAC space), as well 
as incorporating both modalities by concatenation of the spaces  
(PCA–LSI, PCA–PoissonVI63, scVI–LSI and scVI–PoissonVI) as well as 
the MultiVI62) and the choice of cost (squared Euclidean, cosine cost, 
geodesics from heat diffusion with different number of neighbours 
k ∈ [5, 10, 30, 50, 100]). This resulted in 63 different configurations of 
hyperparameters of the moscot model. We measured the stability  
using two metrics. We globally analysed the stability of the transport 
matrix by computing the Sinkhorn divergence between the transport 
plan aggregated to cell-type level and the aggregated transport plan 
of the moscot predictions we used to analyse the pancreas dataset 
throughout the rest of the article. Second, we assessed the stability 
with respect to the research question of the origin of delta and epsilon 
cells by measuring the differences in the probability of certain cell-type 
transitions. We also report the transitions from Fev+ beta cells to beta 
cells, which is biologically confirmed. We compared the mean (and 
s.d.) across all 63 configurations with the predictions of the outer cou-
pling. We observed that the mean Sinkhorn divergence was much 
lower than the Sinkhorn divergence between the reference coupling 
and the outer coupling, which meant that all couplings are close to the 
reference coupling, which has been used throughout the article. Sim-
ilarly, we observed much higher cell-type to cell-type transitions than 
those obtained with the outer coupling.

We aggregated the computed transport matrix to the cell-type level 
(A) and consecutively column-normalized to obtain probabilities of 
ancestry. We then computed the Sinkhorn divergence between the 
aggregated transport matrix A and the aggregated transport matrix 
of the reference B, which is the moscot coupling we used for the analy-
sis of the pancreas dataset. The cost of the Sinkhorn divergence was 
chosen as a binary distance, that is, only with entries 0 and 1. We also 
considered the following transitions: delta from Fev+ delta; epsilon from 
epsilon progenitors; epsilon from Fev+ delta; Fev+ delta from epsilon 
progenitors; and beta from Fev+ beta (as a biologically known transi-
tion). We compared the values of these transitions with the transitions 
we obtained with the outer coupling.

We also report the probabilities of delta cells as being directly derived 
from Ngn3Low, a transition that is biologically implausible. Here we saw 
that the choice of the cost function mattered a lot, but was independent 
of the embedding. That is, when using the squared Euclidean cost or 
the cosine cost, we observed a significant proportion of this transition, 
whereas with the geodesic cost, we did not observe this transition.

Driver feature analysis with moscot.time. We computed driver fea-
tures by correlating the density of the pull-back distribution with fea-
ture values. Moreover, when analysing the transition from epsilon to 
alpha cells, we excluded the Fev+ alpha population (the main progenitor 
cell type of alpha cells) from the set of considered cell types. That is, 
we set their ancestry probability to zero. This helped identify genes 
that are particularly activated in the epsilon cells when correlating the 
pull-back distribution with the processed gene expression.

Marker regions of chromatin accessibility. To identify marker regions 
of chromatin accessibility, a Wilcoxon test was run by calling FindMark-
ers provided in Seurat. The test was performed with default settings 
and the considered cell type was run with respect to all remaining cell 
types (subset to endocrine cells and endocrine progenitors; that is, 
Ngn3Low, Ngn3High, epsilon progenitors, Fev+, Fev+ delta, Fev+ alpha, Fev+ 
beta, alpha, beta, delta and epsilon).

Motif analysis. Motif data were downloaded from cisBP130. Position 
weight matrices and corresponding visualizations and metadata were 
downloaded as a bulk download after filtering by species (Mus mus-
culus) on 1 March 2023. cisBP contains data from both experimen-
tally measured binding activities and inferred ones (for example, from 
other species). TFs with DNA-binding domain amino-acid similarities 
above a certain threshold (defined for each DNA-binding domain class 
separately and provided by cisBP) were also considered as binding 
candidates.

We defined a TF to have an association with a motif if it was either 
directly measured or inferred and had a sufficiently high DNA-binding 
domain amino-acid similarity. That is, is reported as such by cisBP. This 
way, one motif can have an association with multiple TFs and one TF 
can have an association with multiple motifs.

To obtain motif scores on a single-cell level, chromVAR was run using 
the API provided in Signac. In effect, AddMotifs was called, followed 
by RunChromVAR. To obtain marker motifs with moscot, we consid-
ered the temporal order of gene expression and activity of a motif. Of 
note, moscot comes with a list of TFs for different species (human, 
mouse and Drosophila) obtained from the SCENIC+ database131. Thus, 
we computed driver TFs using the capability of moscot to compute 
driver features. Moreover, we performed a differential motif-activity 
test (Wilcoxon test using scanpy’s rank_genes_groups) based on the 
ChromVAR scores. Subsequently, we identified our marker motifs by 
combining these two sources of information. Therefore, we only kept 
marker TFs for which we had an associated TF.

Cell-cycle analysis. We used the pancreatic endocrinogenesis dataset. 
As we studied the cell cycle in proliferative ductal cells, we removed 
immature and mature acinar cells. Consecutively, we computed OT 
couplings between E14.5 and E15.5, as well as between E15.5 and E16.5 
on the shared MultiVI embedding (as for the main analysis of this data-
set). Consecutively, we assigned cell-cycle phases as proposed132,133 to 
all proliferative ductal cells. By aggregating the transport matrix to 
cell-cycle-phase annotations and consecutive row normalization, we 
obtained transition probabilities for cell-cycle phase i to cell-cycle phase 
j (with ordered cell-cycle phases being defined as G1S, S, G2M, M and 
MG1). Note that we did not take transitions into account, which include 
non-cycling cells. In effect, the aggregated matrix A represents the 
probability that a cell of the early time in one cell-cycle phase transitions 
to a certain cell-cycle phase in the later time point. Correct (or wrong) 
directionality means that cells in cell-cycle phase i are more (or less) 
likely to transition to cell-cycle phase i + 1 rather than to cell-cycle phase 
i – 1. Here we assumed that i + 1 = 1 if i = 5 (hence the transition from MG1 
(index 5) to G1S (index 1)) and i – 1 = 5 if i = 1 (hence the transition from 
G1S (index 1) to MG1 (index 5)) to close the circle. In other words, we 
considered a transition i to i – 1 as bad (wrong direction) and i to i + 1 as 
good (right direction). Thus, we were able to build a score from the 
5-by-5 aggregated transport matrix A by adding the scores A− i i, −1 (note 
the minus) and A+ i i, +1 (note the plus). If the score was positive, this meant 
that the direction is correct (as more cells go from stage i to i + 1 than 
from stage i to stage i – 1). We computed the score for both transitions 
E14.5–E15.5 and E15.5–E16.5, and performed a permutation test (by 
permuting all non-diagonal entries of A) with 10,000 permutations.

Trajectory inference with different trajectory-inference methods. 
We used diffusion pseudo-time134, scVelo39, veloVI135, MultiVelo136, 
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CytoTrace137 and the ConnectivityKernel16 in CellRank to predict trajec-
tories in the pancreatic endocrinogenesis dataset. As we were interested 
in the endocrine-cell trajectories, we filtered the dataset to endocrine 
cells and their progenitors. We then applied the GPCCA estimator in Cell-
Rank to each corresponding trajectory-inference kernel. To compute 
fate probabilities, we used compute_fate_probabilities and aggregate_
fate_probabilities to plot the fate probabilities and aggregated cell-type 
to cell-type transition matrices. We used the plot_projection method to 
generate the stream embedding plots. We used all default arguments 
provided for the methods, and only increased max_epochs in VeloVI 
to 50. When using graphs, we used the WNN graph as described above. 
For building the RealTimeKernel with moscot, we set the weight of the 
ConnectivityKernel to 0.001 to strengthen the influence of moscot and 
weaken the influence of the ConnectivityKernel. We highlight that the 
transition probabilities computed with CellRank rely on a different 
procedure than the transition probabilities we computed with moscot.

Labelling of the quality of trajectory-inference methods. To assess 
the reliability of the trajectory-inference methods, we assessed their 
performance by focusing on the well-studied fate probabilities of the 
alpha and beta cell lineage. In effect, we consider the fate probabilities 
of alpha, beta, Fev+ alpha and Fev+ beta cells, with alpha, beta, delta 
and epsilon being possible lineages. We considered a transition to be 
correct if the highest fate probability is the biologically most likely one 
(that is, alpha→alpha, Fev+ alpha→alpha, beta→beta, Fev+ beta→beta). 
Finally, we assigned a method a green dot if all of the four transitions 
are correct, an orange dot if three out of four transitions are correct, 
and a red dot for other outcomes.

Assessment of the consistency with the fate probabilities of moscot. 
To assess the consistency of the predictions between the mode and 
moscot, we computed the Pearson’s correlation coefficient between 
aggregated fate probabilities as output using CellRank.

Diffusion pseudotime based on different modalities. For studying the 
influence of the modality for the prediction of diffusion pseudotime, we 
constructed a graph (using scanpy.pp.neighbors with default param-
eters) based on the PCA for the gene expression and LSI for the ATAC 
modality. For diffusion pseudotime computation, we used the weighted 
nearest neighbour implementation in muon with default parameters.

Interpretability of the transport map with Sparse Monge. We applied 
sparse Monge (described above) to endocrine progenitors in time 
points E15.5 and E16.5. We selected the most highly variable genes using 
scanpy.pp.highly_variable_genes with the default configuration, that 
is, flavor=‘seurat’. This resulted in 2,551 highly variable genes. We then 
transported the cells from E15.5 to cells in E16.5 in normalized and 
log1P-transformed space, using the elastic L1 cost with regularizor γ = 10 
(equation (13)). As previously described47, we then identified relevant 
genes per single cell by determining whether the displacement of a cell 
is higher than 10–6. Subsequently, we referred to this cell-specific set 
of genes as important genes. We identified the most relevant genes per 
cell type by computing the fraction of cells of this cell type to have the 
gene as an important gene. For recovering variability in fate decisions, 
we computed a nearest neighbour graph (k = 50) and computed the 
Jaccard similarity between the important genes of the cell considered 
and the important genes of the neighbourhood. We computed one 
minus this score to obtain a notion of dissimilarity.

Gene KO of NEUROD2 and iPS cell differentiation to pancreatic 
endocrine cells. All statistical analyses were performed using one-way 
analysis of variance with GraphPad Prism 10.

In  vitro differentiation of iPS cells to pancreatic endocrine 
cells. Two homozygous NEUROD2 KO, nuclear H2B-Venus reporter 

(NEUROD2nVenus/nVenus) iPS cell clones and the heterozygous 
hiPSC-INS-T2A-H2B-Cherry reporter (INSCherry/WT) iPS cell line (as 
the control) were used. We used the multistep differentiation protocol 
for in vitro differentiation of iPS cells into endocrine and islet cells that 
includes the stage (S) definitive endoderm (S1), primitive gut tube 
(S2), pancreatic progenitor 1 (PP1) (S3), PP2 (S4) and endocrine lineage 
(S5, 6) as previously described138,139. The C-peptide–mCherry reporter  
human iPS cell line (HMGUi001-A-8) and NEUROD2nVenus/nVenus iPS 
cell clones (HMGUi001-A-42) were used. All cell lines were routinely 
tested to ensure that they were negative for mycoplasma. The sample 
size was determined on the basis of the available experimental data. 
Antibodies used were goat anti-somatostatin, 1:300, polyclonal (D-20) 
(Santa Cruz Biotechnology, SC-7819) and mouse anti-ghrelin, 1:250, 
monoclonal (2F4) (Santa Cruz Biotechnology, SC-293422).

RNA extraction and qPCR analysis. Total RNA was isolated from sam-
ples using a miRNeasy mini kit (Qiagen). Reverse transcription was 
then performed using a SuperScript Vilo cDNA synthesis kit (Thermo 
Fisher Scientific) according to the manufacturer’s instructions. Prede-
signed TaqMan probes (Life Technologies) were used for qPCR analy-
sis (sequences listed in Supplementary Table 1). The reaction mix for 
each sample contained 20 ng cDNA, 4.5 µl nuclease-free water, 5 µl 
TaqMan Advanced master mix (Life Technologies) and 0.5 µl TaqMan 
probe (Life Technologies). The reactions were run on a QuantStudio 
7 Flex instrument (Thermo Fisher Scientific). GAPDH was used as the 
reference gene for normalization. To preserve the spread in the data 
and to facilitate statistical analysis assuming equal variance, Ct values 
from KO samples were normalized to the average control value140. Data 
from independent samples within a single qPCR run were analysed 
together (more detail is provided in the source data). The following 
primers were used: Hs02758991_g1 for GAPDH, Hs00356144_m1 for SST, 
Hs01074053_m1 for GHRL, Hs02741908_m1 for INS, Hs01031536_m1 for 
GCG and Hs00242160_m1 for HHEX.

Immunostaining and imaging. Cryosection preparation, fixing and 
immunostaining were performed as previously described45. The fol-
lowing primary antibodies were used: somatostatin (D-20) goat poly-
clonal (Santa Cruz sc-7819) and ghrelin mouse monoclonal (Santa Cruz  
sc-293422). Pictures were taken using a Leica DMI 6000 microscope 
with using LAS AF software. Images were analysed and quantified using 
LAS AF and ImageJ software programs.

Spatial analysis
Benchmarking moscot.space.mapping across a range of spatial 
datasets. We benchmarked the mapping problem of moscot against 
two state-of-the art methods, Tangram23 and gimVI24, as implemented 
in scVI tools60. We used previously published datasets25. From these 
datasets, we selected ones that we were able to reprocess, which  
resulted in 14 that we considered for the benchmark. Furthermore, in 
contrast to the original benchmark, we did not use the single-cell data-
set as reference, as we were not confident that such data represented a 
faithful ground-truth for comparing the methods. Therefore, we split 
the spatial dataset such that 50% of the data points were treated as 
the single-cell reference and 50% were treated as spatial data. We also 
explicitly maintained the data type as input consistent with model  
requirements. Therefore, we normalized and log1P-transformed counts 
for both moscot and Tangram and we kept raw unnormalized counts for 
gimVI. We randomly held out 100 genes if the total number of genes in a 
dataset was >2,000, otherwise we held out 10 genes. We trained models 
on the remaining genes and evaluated performance using Spearman’s 
correlation. We report the mean Spearman’s correlations across three 
random seeds (including random seeds both for dataset split and ini-
tialization and training routines). For some datasets, Tangram or gimVI 
could not be run either due to time complexity (we set a maximum 
budget of 5 GPU h–1 for each method to run) or errors of the models 



(for example, an inability to match gene identifiers between training 
and imputed data).

Specifically, we ran the sweep on the following parameters:
•	 moscot: epsilon entropy regularization parameter, alpha interpola-

tion parameter between W term and GW term, and tau_a unbalanc-
edness term for the spatial dataset (source). For the cost, we tried 
cosine and squared Euclidean cost for the linear and quadratic term 
and joint_attr; that is, the representation to use for the linear term. 
We assessed both PCA and gene expression on a common set of genes 
present in both spatial and single-cell datasets.

•	 Tangram: learning rate and number of epochs.
•	 gimVI: number of epochs and number of latent dimensions.

We also report memory and time complexity for each algorithm 
across datasets and seeds. All experiments were run on GPUs on the 
Helmholtz Cluster (mix of V100 and A100 GPUs).

Spatial correspondence. Spatial correspondence was computed as 
follows. First, we computed n increasing spatial distance (Euclidean) 
thresholds between all data points in the dataset. Then, at each thresh-
old level, we computed the gene-expression similarity (Euclidean dis-
tance) between all genes in all the spots for which (Euclidean) distance 
was below the selected threshold. The spatial correspondence was 
then calculated as the Pearson’s correlation between gene-expression 
similarity and the spatial-distance thresholds. The computation is 
implemented as a method of moscot’s mapping problem.

Moscot.space.mapping on the liver. We applied the mapping problem 
of moscot.space to the mouse liver dataset from Vizgen MERSCOPE 
downloaded from https://vizgen.com/data-release-program/. We pro-
cessed the dataset following standard scanpy and squidpy processing. 
For the single-cell reference, we downloaded the CITE-seq dataset 
from https://www.livercellatlas.org/, which was reported in a previous 
study26. We used the mapping problem in the following way: we used 
the set of 336 common genes for the linear term, whereas for the quad-
ratic term, we used the PCA of gene expression for the single-cell refer-
ence dataset and the PCA gene expression concatenated to the spatial  
coordinates for the spatial dataset. We then performed the gene expres-
sion and protein imputation by computing the barycentric projection 
(equation (16)) of protein expression to the spatial dataset. The same 
barycentric projection approach was also used to transfer annotations 
of cell types from the single-cell reference to the spatial dataset.

Moscot.space.mapping on spatial ATAC–seq data. To benchmark 
whether leveraging the multimodal representation improves modal-
ity mapping, we considered a previously processed dataset for joint 
multimodal RNA and ATAC profiling of human tonsils141. The dataset 
consists of a single slide of human tonsil biopsy samples, profiled 
with a modified version of the DBiT-seq technology, which is able 
to profile both chromatin accessibility and gene expression for the 
same capture locations. In total, the dataset consists of 2,500 unique 
capture locations. We performed feature selection, PCA and dimen-
sionality reduction with UMAP with the standard Scanpy workflow. 
We randomly split the dataset into two parts and used the first half as 
the proxy single-cell dataset, which consisted of gene-expression and 
chromatin-accessibility information, and the second half as the proxy 
spatial dataset, which consisted of gene-expression and spatial coor-
dinates. We then set out to evaluate whether utilizing the additional 
modality for the quadratic term in the mapping problem would improve 
the prediction of chromatin accessibility in the ATAC case. We used the 
ATAC information for the spatial dataset only for evaluation, which 
was measured using the Pearson’s correlation of peak accessibility as 
predicted by the barycentric projection of the single-cell dataset. In 
particular, we evaluated the average correlation of the top ten marker 
peaks for the seven clusters provided by the authors, which resulted 
in a total of 70 accessibility peaks. All experiments were run on GPUs 

on the Helmholtz Cluster (mix of V100 and A100 GPUs). Benchmarks 
were run using Hydra.

Benchmarking of moscot.space.alignment on simulated data.  
We benchmarked the alignment problem of moscot against two other 
state-of-the-art alignment methods: PASTE4 and GPSA30. We chose the 
same computational budgets across all methods; that is, 12 unique sets 
of hyperparameters:
•	 Moscot: epsilon (entropy regularization parameter) and alpha (inter-

polation parameter between W term and GW term).
•	 PASTE: alpha (interpolation parameter between W term and GW term) 

and norm (scaling of the cost matrix).
•	 GPSA: kernel (kernel for the Gaussian Process), n_epochs (number of 

epochs) and lr (learning rate).
Owing to the inability to run GPSA on GPUs, we ran all methods on 

CPUs. We generated four synthetic datasets based on the data gen-
eration described in the GPSA publication30. In brief, samples from 
random normal distribution were generated to build a synthetic 
gene-expression file arranged in a grid. Points were then randomly 
subsampled by a fraction of 0.7, 0.8 and 0.9 of the original datasets, so 
that the total number of points did not match in the source and target 
dataset. This approach was similar to the previously used benchmark 
settings4,30. However, to make all three methods comparable, we used 
the barycentric projection (equation (16)) of spatial coordinates with 
respect to the coupling for both PASTE and moscot. Because of the low 
sample size of the experiments, we ran moscot in full-rank mode (as 
opposed to low-rank mode). Larger datasets, such as the one analysed 
in the main text, would be prohibitively large for both PASTE and GPSA.

Moscot.space.alignment on mouse brain coronal sections. We  
applied the alignment problem of moscot to a large-scale MERFISH 
dataset from Vizgen MERSCOPE (https://vizgen.com/data-release- 
program/). Specifically, two sections of the mouse coronal brain. We 
aligned three samples from three different mice for each section. We 
performed the first alignment with the alignment problem of moscot 
in the affine mode (equation (17)). Thus, two out of the three slices were 
aligned to the remaining one, which was chosen as the reference. Fur-
thermore, we performed a second alignment on FGW-aligned coordi-
nates with a W-type problem to obtain an improved warped alignment. 
This turned out to prove useful in low-rank settings. We performed the 
same operations for both triplets of coronal sections.

Gene-consistency analysis of aligned slices. We assessed the qual-
ity of the alignment based on gene expression only, as we did not have 
cell-type annotations for the brain sections of interest. To this end, we 
computed the neighbour graph in the aligned space using squidpy (kNN 
mode with at least 30 neighbours for each observation). Then, for each 
gene, we filtered cells with no expression and retrieved neighbours of 
the reference section (0) from the two other sections (1 and 2). We then 
assessed the gene-expression histogram across all cells in the query 
sections that were neighbours in the reference section and reported 
the expression of the gene of interest. We performed this analysis 
across all genes and reported the L1 Wasserstein distance between 
gene-expression histograms. A low L1 Wasserstein distance between the 
gene-expression density of the query section and the gene-expression 
density of the reference section meant that the set of cells in the refer-
ence is similar to the matched cells of the aligned section. Conversely, if 
the L1 Wasserstein distance was high, it meant that neighbouring cells 
in the query and reference slides are not similar in gene-expression dis-
tribution, which therefore highlights a potential mismatch in the align-
ment. It should be noted that a source of such a mismatch could also be 
the intrinsic biological variability between tissue sections. Neverthe-
less, because we did not have access to tissue-section annotations, we 
decided to use the gene-expression similarity metric described above 
to quantitatively evaluate alignment consistency. We further evaluated 
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whether the distribution of L1 Wasserstein distance between query and 
reference sections showed a correlation with the mean expression of 
the gene. We did not observe a strong association, which highlighted 
the fact that this analysis is robust to gene-expression variability. All 
results are reported in Supplementary Fig. 14.

Spatiotemporal analysis of mouse embryogenesis Stereo-seq 
data
Preprocessing. We used a previously published mouse embryogenesis 
Stereo-seq dataset10. The data were preprocessed and annotated by the 
authors of that study and available for download as AnnData objects 
from https://db.cngb.org/stomics/mosta/. In the reported analysis, 
for full embryo mapping, we used Mouse_embryo_all_stage.h5ad, a 
file that contains a single slide for each time point and annotations to 
major tissue and organs (hereafter referred to as annotations). This file 
was also used to extract brain bins from early time points. For the latest 
time point, E16.5, we used the detailed brain annotation slide given in 
16.5_E1S3_cell_bin_whole_brain.h5ad. For each section, we used the 
‘count’ layer and performed standard preprocessing with scanpy. We 
filtered bins (min_genes = 200) and genes (min_cells = 3), normalized 
cell counts and log-transformed the data.

To perform analysis over brain bins, and to transfer the annotation 
from E16.5 to earlier time points (E13.5–E15.5), we extracted bins anno-
tated as ‘brain’ from the full embryo AnnData object and merged them 
with the E16.5 annotated brain AnnData object.

Mapping accuracy. We used moscot.spatiotemporal on each time pair 
of the data and calculated annotation-transition rates. We compared 
the accuracy to moscot.time, TOME7 and PASTE2 (ref. 31) using the 
germ-layer and annotation-transition accuracy as described above. In 
both moscot settings, we fixed epsilon (ϵ e= 1 − 4), used the unbalanced 
low-rank approach, used rank = 500, γ = 100 and performed a grid search 
for τ τ, ∈ {0.01, 0.05, 1.0}a b . We included biologically informed priors 
using growth-rate and death-rate modelling computed by moscot. For 
moscot.spatiotemporal, we also performed a grid search for the inter-
polation parameter α ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 0.9}. To assess TOME 
performance, we followed the code base https://github.com/Chengxi-
angQiu/tome_code. For PASTE2 evaluation, we used published code 
https://github.com/raphael-group/paste2. However, owing to scaling 
limitations, we subsampled the data at each time point to n = 2,000 
cells. We evaluated performance over subsamples from ten different 
random seeds.

Moscot analysis. Using dedicated analysis functions in moscot, we 
identified TF driver genes and putative target genes for the liver. For the 
analysis of driver genes, we first computed the pull-back of liver anno
tation from each pair of time points. Next, driver genes were obtained 
using moscot.compute_features_correlation between the aggregated 
pull-back and gene expression. Similarly, for the identification of target 
genes, we computed the push-forward of Hnf4a across time points and 
evaluated its correlation with gene expression.

Mapping annotations across time points. We used the detailed cell- 
type annotation provided for E16.5 brain to infer annotations of earlier 
time points. We mapped bins across time points using a higher rank 
(rank = 10,000), now possible as we were considering a subpopulation 
of the bins. To obtain the annotation, we started from the last couple 
(E15.5 and E16.5) and used the moscot.spatiotemporal transition matrix 
aggregated over annotations. We assigned each bin at E15.5 with the most 
probable annotation. Once we had the annotations for E15.5, we repeated 
this procedure to earlier time points. To evaluate the accuracy of the 
annotations, we used Scanpy’s rank_genes_groups with respect to the in-
ferred annotations. For each annotation, we queried whether the marker 
genes, as previously reported10, were within the top 50 ranked genes. We 
reported the percentage of annotations for which this condition held.

CellRank analysis. We used CellRank to infer marker genes associ-
ated with terminal states. To define the CellRank kernel, K, a matrix 
containing bins from all time points, was used to obtain the transition 
probabilities between bins as follows:
1.	 Obtain a sparse representation of the moscot.spatiotemporal transi-

tion maps. These transition matrices occupy the superdiagonal of K 
as they transport bins from early to late time points.

2.	Compute the transition matrices within each time point based on 
gene-expression similarity. These values occupy the diagonal of K.

3.	Combine the above with weights 0.9 and 0.1, respectively to obtain 
K.

4.	Row-normalize K.
We used GPCCA estimator142 in CellRank to compute terminal states, 

independently, for the full embryo and brain bins. We defined each 
terminal state by assigning the 30 most likely bins to it. We computed 
absorption probabilities on the Markov chain to these combined sets 
per terminal state group and interpreted these as fate probabilities. 
We correlated expression for each gene with the computed fate prob-
abilities across all bins. We identified the top 20 most strongly cor-
related genes and TFs per terminal group. The list of mouse TFs was 
downloaded from AnimalTFDB (http://bioinfo.life.hust.edu.cn/Ani-
malTFDB/#!/download).

Moscot.spatiotemporal of Drosophila embryo
We set out to investigate how moscot.spatiotemporal could be used 
to study the embryo development of Drosophila and we leveraged a 
3D dataset profiled using Stereo-seq technology10. We downloaded 
the preprocessed dataset provided by the authors33. We performed 
highly variable gene selection, PCA and dimensionality reduction 
using UMAP with Scanpy. We then solved a moscot.spatiotemporal 
problem using PCA embedding for the linear term and normalized 
spatial coordinates in the quadratic term. We performed cell transition 
analysis as described for moscot.time and visualized transported mass 
between the source and target using both the push and pull operator 
and cell-transition matrices. We further performed a pull operation of 
indicator vectors of cell types of the CNS and muscle tissue and cor-
related it with the expression of all genes. We visualized the highest 
correlating genes, which revealed key TFs, both previously unknown 
and previously reported by the authors, involved in CNS and muscle 
tissue development.

Ethics statement
Animal studies were conducted with adherence to relevant ethical 
guidelines for the use of animals in research in agreement with German 
animal welfare legislation with the approved guidelines of the Society 
of Laboratory Animals (GV-SOLAS) and the Federation of Laboratory 
Animal Science Associations (FELASA). The study was approved by the 
Helmholtz Munich Animal Welfare Body and by the Government of 
Upper Bavaria. NVF mice were kept at the central facilities at Helmholtz 
Munich under specific pathogen-free conditions in animal rooms 
with light cycles of 12–12  h, temperature of 20–24 °C and humidity of 
45–65%. The mice received sterile filtered water and a standard diet 
for rodents ad libitum.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The mouse embryogenesis atlas7 is available at http://tome.gs. 
washington.edu. The mouse liver CITE-seq data26 is available at https://
www.livercellatlas.org/. The Vizgen MERSCOPE liver and brain coro-
nal sections dataset is available at the Vizgen public dataset release 
website https://vizgen.com/data-release-program/. The datasets for 
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benchmarking the spatial mapping problems were taken from a previ-
ous publication25. The spatiotemporal atlas of mouse embryogenesis 
(MOSTA)10 is available at https://db.cngb.org/stomics/mosta/. The 
spatiotemporal Drosophila dataset33 is available at https://db.cngb.
org/stomics/flysta3d/. The single-cell RNA-seq dataset34 is available 
from the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE132188). The pancreas multiome data 
are available from the GEO (accession code GSE275562).

Code availability
The moscot software package is available at https://moscot-tools.org, 
which includes documentation, tutorials and examples. The code to 
reproduce our analysis is available from GitHub (https://github.com/
theislab/moscot-framework_reproducibility) as is the code to repro-
duce the benchmarking experiments (https://github.com/theislab/
moscot_benchmarks).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Low-rank approximates full-rank Sinkhorn at faster 
running times. a. Runtime in minutes to compute a coupling matrix (left)  
and to evaluate algorithm performance (right), across time points on the 
embryogenesis data7 of Fig. 2, for full-rank Sinkhorn (default moscot.time)  

and low-rank Sinkhorn13–15 for various ranks (Methods). b. Cell number per time 
point. c. Comparing low and full-rank approaches in terms of the germ-layer 
(top) and curated transition (bottom) metrics of Fig. 2, for individual time points 
(left) and aggregated over time-windows (right, Methods).



Extended Data Fig. 2 | Metacells do not resolve PGCs and metacell mapping 
degrades driver gene correlation for Pancreatic epithelium. a. UMAP of 
E9.5 cells, visualizing individual cells (small dots) and metacells (large dots) 
computed using Metacell-221 (Methods). Colors indicate PGCs and cell types 
that co-occur in metacells with PGCs. The zoom-in highlights PGCs, which are 
not captured by any metacell. b. Bar chart over cell-type composition for the six 

metacells at E9.5 containing most PGCs. No metacell received the “PGC” label 
because they are dominated by other cell types. c,d. Comparing moscot 
mapping at E10.5-11.5 on the single cell versus metacell levels in terms of  
the curated transition and germ layer scores (c) and correlation between 
Pancreatic epithelium ancestor probabilities and known driver gene 
expression (d; Methods).
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Overview of CITE-seq data and mapped annotations. 
a. UMAP embedding of single-cell (left) and CITE-seq (right) dataset, respectively. 
Labels were provided in the original publication. b. Cell type annotation 
mapped in spatial coordinates. All cell types visualized in space (left), and 

spatial plot of only Kupffer cells (blue) and Endothelial cells (red,right). Boxes 
in solid lines correspond to insets in Fig. 3. c. Top five differentially expressed 
proteins (five genes/proteins per cluster in rows) in original CITE-seq dataset 
(left) and predicted cell types and protein expression in space (right).
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Alignment of spatial transcriptomics data of sections 
of the mouse brain. a. Spatial visualization of the three coronal sections from 
three different mouse brains before the alignment. b. Spatial visualization of 
the three coronal sections after affine alignment. c. Spatial visualization of the 

three coronal sections after warping alignment. d.-f. Original, affine transform 
and warped transformed tissue slices from the second set of three coronal 
sections from three different mouse brains.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Analysis of development lineages by interfacing 
moscot.spatiotemporal with CellRank 2. a. UMAP representation of the 
spatiotemporal atlas of mouse embryogenesis (MOSTA) over eight time points, 
from E9.5 to E16.510 colored by time points. b. UMAP colored by macrostates 
identified by CellRank 2. c. Projection of cell’s absorption probabilities towards 

identified macrostates. Cells colored by lineage annotation. d. CellRank 2  
fate probabilities for heart fate visualized in spatial coordinates e. Spatial 
visualization of driver genes identified for the heart development lineage, 
Myh6 (top) and Gata4 (bottom).
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Extended Data Fig. 6 | Summary statistics and visualization of the pancreatic endocrinogenesis dataset. a. Distribution of cell types per time point. b. UMAP 
embeddings based on graphs constructed from gene expression (left, Methods) and open chromatin accessibility (right, Methods).



Extended Data Fig. 7 | Fev expression over pseudotime per lineage.  
a. Normalized expression of Fev over pseudotime134 computed with cellrank.
pl.gene_trends building on CellRank’s pseudotime kernel. b. Normalized gene 

expression of Fev and each islet hormone for the respective lineage plotted 
over pseudotime.
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Extended Data Fig. 8 | Similarity of cell types based on different modalities. 
a. Aggregated correlation matrix of refined cell types based on processed  
gene expression, computed via scanpy’s dendrogram function, followed by  
scanpy.pl.correlation_matrix. The gene expression data was preprocessed  
by normalization (scanpy.pp.normalize_total) and log1p-transformation, 
followed by 30-dimensional PCA computation. b. Aggregated correlation 
matrix of cell types based on processed ATAC peak counts, computed via 
scanpy.tl.dendrogram followed by scanpy.pl.correlation_matrix. The peak 

counts were preprocessed using tfidf-transformation (muon.atac.pp.tfidf ), 
followed by normalization and log1p-transformation, before computing a 
singular value decomposition and removal of dimensions which are highly 
correlated with library size. c. Aggregated correlation matrix of cell types 
based on both gene expression and open chromatin accessibility. After scaling 
both modalities to unit variance, the processed gene expression was 
concatenated with the processed LSI embedding.



Extended Data Fig. 9 | NEUROD2 knockout experiments in human iPSCs- 
derived islet cells. a. Insulin mean intensity and the number of SST-positive 
cells measured with immunostaining (Methods) for control, clone 37 and clone 
8979 (n = 4 independent experiments, standard error shown). b. Relative mRNA 

expression of Ins2, SSt, HHEX, and GCG measured with qPCR (n = 7 biologically 
independent samples for Ins2, Sst, n = 4 for Hhex, n = 7 for Gcg). We report mean 
and standard deviation (Methods), p-values obtained from one-sided ANOVA 
test with Tukey multiple comparison correction.
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Extended Data Fig. 10 | Delta and epsilon motif activity calculated with 
moscot.time. a. Motif with cisBP identifier M09209_2.00, a marker motif 
identified for the delta population. For a motif to be active both the motif 
activity score (top) and the gene expression (associated transcription factor, 
here Isl1) should be high. Delta cells and their conjectured progenitors are 

underlaid in green (Supplementary Table 30). b. Motif with cisBP identifier 
M09438_2.00, which we identified to be a marker motif for the epsilon 
population (Supplementary Table 31). The motif is associated with the Tead1 
transcription factor (Methods).










	Mapping cells through time and space with moscot

	Moscot is an OT framework for mapping cells

	Reconstructing mouse embryogenesis

	Mapping and aligning spatial samples

	Charting spatiotemporal mouse development

	Delineating mouse pancreas development

	Discussion

	Online content

	Fig. 1 Moscot enables efficient multimodal OT across single-cell applications.
	Fig. 2 Moscot faithfully reconstructs atlas-scale developmental trajectories.
	Fig. 3 Moscot enables multimodal mapping and alignment of spatial transcriptomic data.
	Fig. 4 Inference of spatiotemporal dynamics with moscot.
	Fig. 5 Moscot reveals lineage ancestries of delta and epsilon cells.
	Extended Data Fig. 1 Low-rank approximates full-rank Sinkhorn at faster running times.
	Extended Data Fig. 2 Metacells do not resolve PGCs and metacell mapping degrades driver gene correlation for Pancreatic epithelium.
	Extended Data Fig. 3 Overview of CITE-seq data and mapped annotations.
	Extended Data Fig. 4 Alignment of spatial transcriptomics data of sections of the mouse brain.
	Extended Data Fig. 5 Analysis of development lineages by interfacing moscot.
	Extended Data Fig. 6 Summary statistics and visualization of the pancreatic endocrinogenesis dataset.
	Extended Data Fig. 7 Fev expression over pseudotime per lineage.
	Extended Data Fig. 8 Similarity of cell types based on different modalities.
	Extended Data Fig. 9 NEUROD2 knockout experiments in human iPSCs-derived islet cells.
	Extended Data Fig. 10 Delta and epsilon motif activity calculated with moscot.




