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Old ageis associated with adecline in cognitive function and anincreasein
neurodegenerative disease risk'. Brain ageing is complex and is accompanied by many
cellular changes?. Furthermore, the influence that aged cells have on neighbouring
cells and how this contributes to tissue decline is unknown. More generally, the tools
to systematically address this question in ageing tissues have not yet been developed.
Here we generate a spatially resolved single-cell transcriptomics brain atlas of

4.2 million cells from 20 distinct ages across the adult lifespan and across two
rejuvenating interventions—exercise and partial reprogramming. We build spatial
ageing clocks, machine learning models trained on this spatial transcriptomics atlas,
toidentify spatial and cell-type-specific transcriptomic fingerprints of ageing,
rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and
deeplearning, we find that T cells, which increasingly infiltrate the brain with age, have
amarked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem
cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also
identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating
effect of neural stem cells on their neighbours. These results suggest that rare cell types

can have a potentinfluence on their neighbours and could be targeted to counter
tissue ageing. Spatial ageing clocks represent a useful tool for studying cell-cell
interactions in spatial contexts and should allow scalable assessment of the efficacy
of interventions for ageing and disease.

Brainageingis associated with astrikingincreaseintherisk of neurode-
generative diseases, including Alzheimer’s disease and other forms of
dementia'. Previous studies have interrogated the molecular changes
that occur during brain ageing at single-cell resolution® . These data-
sets provide rich information on age-related cellular changes in the
brain, butthey lack insightinto the spatial context, especially at scale.
We are therefore missing a systematic understanding of spatiotempo-
ral changes in the brain during ageing, including changes in local cell
neighbourhoods and cell-cell interactions.

The advent of high-throughput spatial omics holds great promise
for characterizing spatial interactions'. Although recent studies on
spatial brain ageing have helped clarify cellular and regional changes
withage" ", they have provided either spatial single-cell resolution” or
temporal resolution’®", but not both. The lack of high spatiotemporal
resolution at single-cell level in current studies makes it difficult to
understand the full range of cell-type-specific changes and interac-
tions that occur throughout life, particularly in geriatric ages, when
cognitive decline and the onset of neurodegenerative disease are most
prominent. Notably, there is a need for new advanced computational

tools to analyse spatial omics data and capture spatial interactions
during ageing. Here we generate a spatially resolved single-cell tran-
scriptomics atlas of the mouse brain across adult life and in response
to rejuvenating interventions (exercise and partial reprogramming),
and we develop powerful machine learning tools toidentify prominent
cell proximity effects in spatial datasets.

Spatiotemporal atlas of brain ageing

We generated a single-cell spatial transcriptomics atlas of the ageing
mouse brain across the entire lifespan (Fig. 1a). We collected coronal
brain sections from male mice at 20 different ages tiling the entire
lifespan (2 independent cohorts of mice; Methods), as well as sagittal
brain sections from male mice at 6 different ages. To generate spatial
transcriptomic data at single-cell resolution, we used multiplexed
error-robust fluorescence in situ hybridization (MERFISH) technol-
ogy®® and measured transcripts of 300 genes across entire coronal or
sagittal sections. This 300-gene panel was designed to contain cell-type
markers, genes in ageing-related pathways, and genesinvolved in other
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Fig.1|Spatially resolved single-cell transcriptomic profiling of the brain
acrosslifespan. a, Experimental workflow for generating spatial transcriptomics
datafrom mouse brains collected across the adult lifespan using MERFISH.

b, Visualization of single cells coloured by cell type using uniform manifold
approximation and projection (UMAP) coordinates across all coronal section
samples (top left) or all sagittal section samples (bottom left), and visualizations
under spatial coordinates for one representative coronal section (top right)
withregionlabelsand one representative sagittal section (bottom right) with
some anatomic structures annotated. ¢, Global cell-type composition changes
inthe coronal section dataset witheach dot representing anindividual mouse.
Line of best fit shown with 95% confidence interval. Pearson correlations (r)
between cell-type composition and age are shown with their 95% confidence
interval.Strongincreasesareinred and strong decreases areinblue.d, Scatter
plotof cells by their spatial coordinates across all coronal sections and ages

processes (gene panel selection is described in Methods and Supple-
mentary Table1).

Our spatiotemporal atlas of the ageing mouse brain yielded a
total of 2.3 million high quality cells from coronal sections across
20 ages (3.4 to 34.5 months) and sagittal sections across 6 ages

with cells coloured by cell type: T cells (red), NSCs (blue) and other cell types
(grey).e, Number of genes withincreasing or decreasing expression with age
foreach celltypeacross coronal sections. Genes with the largest changes are
shown for the top five cell types. f, Schematic of the clustering approach for
identifying spatiotemporal gene expression trajectories across coronal sections.
g, Smoothed median andinterquartile range (error band) of the mean gene
expression z-scores across age of all gene, cell-type and subregion combinations
splitintonine annotated clusters. Pearson correlation (r) between median gene
expression z-score and age is shown; number of trajectories within each cluster
isnotedinside parentheses. h, Heat maps showing trajectory cluster membership
across different cell types and subregions for two selected genes. i, Scatter plot
of cells by their spatial coordinates across all coronal sections and ages with cells
coloured by scaled log-normalized gene expression of Stat1 (red) and Gamt (blue).

(3.8t0 26.7 months) (Supplementary Tables 2-4). MERFISH meas-
urements were highly reproducible across adjacent coronal sections
(Extended Data Fig. 1a) and the log-normalized gene expression
quantiles were similar across different sections (Extended Data
Fig.1b).
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Inthe coronal dataset, we identified 18 cell types using pre-defined
marker genes thatare included in the MERFISH gene panel (Extended
DataFig. 1c,d and Supplementary Table 5), including neuronal cell
types: excitatory neurons (neuron-excitatory), inhibitory neurons
(neuron-inhibitory) and medium spiny neurons (neuron-MSN); glial
cell types: astrocytes, oligodendrocytes and oligodendrocyte pro-
genitor cells (OPCs); cell types that are localized to the lateral ven-
tricles (VEN), which contain the neurogenic niche: neural stem cells
(NSCs), neuroblasts and ependymal cells; cell types involved in brain
vasculature: endothelial cells, pericytes, vascular smooth muscle cells
(VSMCs) and vascular leptomeningeal cells (VLMCs); and immune cell
types: microglia (the residentimmune cell of the brain), T cells, Bcells,
macrophages and neutrophils (Fig. 1b and Extended Data Fig. 1e). We
identified the same cell types except for neutrophilsin the sagittal data-
set (Fig.1b). Our atlasincludes both abundantcell types (for example,
excitatory and inhibitory neurons, oligodendrocytes, astrocytes and
microglia) and rare cell types (for example, T cells, B cells, neutrophils,
ependymal cells, NSCs and neuroblasts), some of which have not been
studied in previous spatial transcriptomics atlases of the brain'?, Cell
typeslocalized to their expected spatial regions. For example, excita-
tory neurons were found predominantly in the cortex (CTX), whereas
oligodendrocytes were most densely populated in the white matter
tracts (Fig. 1b and Extended Data Fig. 1e). The spatial localizations of
the main cell typesin our dataset are consistent with those in existing
spatial transcriptomics studies”*?* (Extended Data Fig. 1f). Immuno-
fluorescence staining also confirmed the spatiotemporal expression
of specific markers in the panel (Extended Data Fig. 2).

To determine how cells localize to different regions of the brain, we
performed unbiased clustering of cells on the basis of cell neighbour-
hood abundances”. This clustering resulted in annotation of seven
anatomic subregions that were manually grouped into four regions:
(1) white matter tracts of the corpus callosum and anterior commissure
(CC/ACO); (2) three subregions of the CTX (CTX layer 1and meninges
(CTX_L1/MEN), CTXlayer2/3(CTX_L2/3), CTXlayer4/5/6 (CTX_L4/5/6));
(3) two subregions of the striatum and adjacent regions (STR) (cau-
doputamen and nucleusaccumbens (STR_CP/ACB) and septal nucleus
and diagonal band nucleus (STR_LS/NDB)); and (4) the VEN (Fig.1b and
Extended Data Fig. 3a,b). Known cortical layer and neuronal markers
exhibited similar spatial expression patterns between our dataset and
the Allen brain in situ hybridization atlas” (Extended Data Fig. 3c,d
and Supplementary Table 1), confirming the coarse annotation of the
cortical layers.

We observed aglobalincreasein the proportion of microglia, oligo-
dendrocytes and T cells during ageing, as well as a global decrease in
the proportion of OPCs, NSCs and neuroblasts in the coronal section
dataset (Fig.1cand Supplementary Table 6). Notably, T cellsand NSCs
exhibited the strongest changes with age. T cells were found across all
sampled regions and strongly increased with age (Pearson correlation
r=0.72 with 95% confidence interval [0.40, 0.88]) (Fig. 1c,d). NSCs
were generally localized to the VEN throughout life and substantially
decreased in proportion with age (Pearson correlation r=-0.93 with
95% confidence interval [-0.97,-0.82]) (Fig. 1c,d).

We also observed region-specific cell-type proportion changes with
age (Supplementary Table 6). For example, oligodendrocytes strongly
increased in the CTX and STR during ageing (Extended Data Fig. 3e),
whereas OPCs strongly decreased in the CC/ACO and STR (Extended
Data Fig. 3f). Notably, T cells and microglia strongly increased in the
CC/ACO white matter region with age (Extended Data Fig. 3g,h), and
Tcells also strongly increased in the STR (Extended Data Fig. 3g).

To determine whether similar changes in cell-type proportion dur-
ing ageing are observed in other regions of the brain, we used our
sagittal section dataset, which contains regions such as the olfac-
tory bulb and cerebellum that are not captured in the coronal section
dataset. The cell-type proportion changes with age in the sagittal sec-
tions were largely consistent with those observed in coronal sections
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(Extended Data Fig. 3i). T cell numbers increased in several regions of
the brain with age (Extended Data Fig. 3j). NSCs were present mostly
in the subventricular zone of the VEN, the rostral and caudal migra-
tory streams, and to a reduced extent in the dentate gyrus in sagittal
sections (Extended DataFig. 3j). NSCs decreased in the subventricular
zone within the VEN (Extended Data Fig. 3j).

These datasets represent a spatially resolved single-cell atlas of
multiple brain regions across life, which reveals substantial changes
in cell-type proportions with age.

Spatiotemporal gene expression changes

We identified genes that change in expression during ageing in each
celltype (Methods and Supplementary Table 7). Genes thatincreased
in expression with age were generally involved in immune response
(Supplementary Fig. 1a and Supplementary Table 8), whereas genes
that decreased in expression with age were generally involved in cel-
lular metabolism and development pathways (Supplementary Fig. 1b
and Supplementary Table 8). Microglia exhibited the largest number
of genes that changed in expression with age of any cell type (Fig. 1e).
In microglia, Pdcd1, which encodes the receptor PD-1, was one of the
most highly upregulated genes with age (Spearman correlation with
agep =0.93),and Fcrls, which encodes a Fc receptor-like molecule, was
the most strongly downregulated gene with age (Spearman correlation
withage p=-0.76).

The magnitude of transcriptomic changes in different cell types
varied across subregions. The CC/ACO region, which consists of white
matter tracts, exhibited the largest gene expression changes across
multiple cell types with age (Supplementary Fig. 1c), inline with white
matter tracts as hotspots of ageing in the brain®.

To characterize the patterns of gene expression changes during age-
ing (hereafter ‘trajectories’), we clustered gene expression trajectories
across all 20 ages for each combination of gene, cell type and spatial
subregion (as defined in Extended Data Fig.3a), and we identified nine
different clusters representing archetypes of gene expression trajecto-
ries (Fig. 1f,g and Supplementary Table 7; see Extended Data Fig. 4a,b
for other clustering results). Within a given cell type and subregion,
the genes present in these trajectory clusters were associated with
distinct biological processes. For example, for oligodendrocytes in
the CC/ACO, ‘decreasing early’ genes are implicated in development
pathways, whereas ‘decreasing gradual’ genes are involved in stress
response and DNA damage repair; and ‘increasing gradual’ genes are
implicated in many signalling and development pathways, whereas
‘increasing late’ genes are involved in immune responses (Extended
Data Fig. 4c and Supplementary Table 9).

This analysis provides aspatiotemporal transcriptomic fingerprint
forany given gene, showcasingits temporal expression pattern foreach
combination of subregion and cell type. For example, the spatiotem-
poral fingerprints for the interferon-response genes StatI and Ifi27
show both ‘increasing late’ (dark red) and ‘increasing gradual’ (light
red) trajectories with age across nearly all cell types and subregions
(Fig.1hand Extended DataFig. 4d). Conversely, the spatiotemporal fin-
gerprint for Gamt, ageneinvolved in creatine synthesis, broadly shows
‘decreasing gradual’ (dark blue) trajectories with age (Fig. 1h), whereas
the antioxidant enzyme gene Cat shows cell-type-specific ‘decreasing
gradual’ (dark blue) expressionin oligodendrocytes, OPCs, and vascular
celltypesacross most subregions (Extended Data Fig.4d). Several genes
exhibited cell-type-specific gene and/or subregion-specific expression
trajectories with age (Extended Data Fig. 4d). Gene expression can
alsobe visualized directly on brain sections (Fig.liand Extended Data
Fig.4e) and forindividual cell types (Supplementary Fig. 2), confirming
the cell-type-specific and region-specific changes in gene expression.
Using immunofluorescence staining, we validated the spatiotemporal
levels of STAT1in young, middle-aged, and old brains (Extended Data
Fig.2).
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Fig.2|Spatial ageing clocks. a, Pipeline for building spatial ageing clocks from
the coronal section dataset and using them to compare ageing across conditions
or quantify the deviation (age acceleration) of acell fromits expected predicted
age.b, Predicted age asafunction ofactual age, with predicted ages obtained
by leaving out all cells from one mouse and training spatial ageing clocks on the
remaining data to make predictions on the held-out cells and repeating this
procedure for all mice. Heat map shows density of predicted ages, circles show
median predicted age per mouse, and the line of best fit for the median predicted
agesisshowninblack. Pearson correlation between predicted age and actual
ageforallcellsisreported as R (with values of R > 0.7 inbold), and the Pearson
correlationbetween median predicted age and actual age for all miceis reported

Thus, our atlas provides a spatiotemporal transcriptomic view of
brain ageing at single-cell resolution.

Spatial ageing clocks

To measure the biological age of individual cells, we trained machine
learning models to predict mouse age from the spatially preprocessed
gene expression data of each cell (hereafter ‘spatial ageing clocks’). In
the MERFISH gene panel, we included several genes with a causal role
inageing® (Methods and Supplementary Table 1), which s helpful for
generating more biologically meaningful ageing clocks.

asr; 95% confidenceintervals for correlations are showninbrackets. ¢, Dot plot
comparing the performance of single-cell ageing clocks without spatial
smoothing (SingleCell) with our spatial ageing clocks (SpatialSmooth). Dot
colour corresponds to Pearson correlation and dot size isinversely related
tomean absolute error between predicted age and actual age. d, Density of
predicted agesinanexternal 140-gene MERFISH dataset consisting of 6 coronal
sections from 3 mice (3,19 and 25 months old). e, Density of predicted ages across
the young (<9 months) and old (>19 months) sagittal section samples. f, Summary
ofthetraining dataused tobuild the spatial ageing clocks and the generalization
of spatial ageing clocks to different datasets. scRNA-seq, single-cell RNA-seq;
snRNA-seq, single-nucleus RNA-seq.

To preserve spatial information while maximizing the performance
of single-cell ageing clocks, we developed a soft spatial pseudobulking
procedure, referred to as SpatialSmooth. This method involvesiterative
smoothing of gene expression values along a spatial graph of neigh-
bouring cells of the same cell type before training cell-type-specific age-
ing clock models onthe smoothed single-cell transcriptomes (Fig.2a;
detailsinMethods). Ageing clocks developed using the SpatialSmooth
method on the coronal section dataset yielded high performance
(R>0.7) across 14 of the 18 cell types, including very rare cell types
such as T cells, NSCs and neuroblasts (Fig. 2b). Spatial ageing clock
performance was generally robust to different parameter choices in
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SpatialSmooth (Extended Data Fig. 5a) and was similar when trained
and evaluated on the two independent cohorts in the coronal section
dataset (Extended Data Fig. 5b,c). Spatial ageing clocks trained using
SpatialSmooth substantially outperformed those trained directly on
the spatial single-cell transcriptomes of the coronal section dataset
(Fig.2c). These spatial ageing clocks generally outperformed previous
cell-type-specific transcriptomic ageing clocks* (Extended Data Fig. 5d
and Supplementary Fig. 3), and could be generated for more cell types,
even lesscommon ones (for example, ependymal cells, macrophages,
T cellsand pericytes). For alldownstream applications, we used the 14
high-performing spatial ageing clocks.

The number of genes automatically selected by each cell-type-specific
spatial ageing clock was variable, ranging from 62 genes for T cells t0 292
genes forastrocytes (Supplementary Fig.4 and Supplementary Table 10).
Spatial ageing clock genes with positive coefficients were enriched for
many distinct biological processes (Extended Data Fig. 5e and Supple-
mentary Table 11), whereas spatial ageing clock genes with negative
coefficients were generally enriched for differentiation and develop-
ment processes (Extended Data Fig. 5f and Supplementary Table 11).

Spatial ageing clocks exhibit better performance within the same
celltypethanacross different cell types (Extended Data Fig. 5g). Within
the same cell type, spatial ageing clocks generally produced accurate
predicted ages across all subregions of the coronal brain sections
(Extended Data Fig. 5h). Spatial ageing clocks trained on individual
subregions also exhibited good performance (Methods, Extended Data
Fig. 5i), and they could similarly generalize to the same cell types in
other subregions of the coronal brain sections (Extended Data Fig. 5j).

We evaluated whether these spatial ageing clocks are generalizable
to external datasets. Our spatial ageing clocks robustly separate three
ages (young, middle-aged and old) onanindependent MERFISH data-
set of coronal brain sections generated using a panel of 140 genes®
(Methods) (Fig. 2d, Supplementary Fig. 5a). The separation of the three
agesinthis external dataset was generally similar to that observed for
cross-validation within the coronal section dataset (Fig. 2d and Sup-
plementary Fig. 5b). Instances of reduced spatial ageing clock perfor-
mance in this external dataset are probably linked to a combination
of low gene overlap with our dataset (72 out of 300 genes), relatively
small transcriptomic changes withagein certain cell types such as neu-
rons”", and low cell numbers for some cell types such as neuroblasts
and NSCs. Notably, the spatial ageing clocks, which were trained on
data from male mice, generalized to an external MERFISH dataset of
coronal brainsections from female mice” (Extended DataFig. 6a) and
to a corresponding single-nuclei RNA-sequencing (RNA-seq) dataset
from female mice” (Extended Data Fig. 6b).

Spatial ageing clocks, which were trained on cells from coronal brain
sections, also generalized to sagittal brain sections, which include
regions that are not present in coronal sections (for example, olfac-
torybulband cerebellum) (Fig. 2e, Extended Data Fig. 6¢,d and Supple-
mentary Fig. 5c), and to adissociated single-cell RNA-seq dataset of the
entire brain containing additional brain regions from male mice (young
and old)® (Extended Data Fig. 6e). Overall, spatial ageing clocks can
robustly separate youngand old cells across most cell typesin all exter-
nal datasets evaluated (statistical analysis in Supplementary Table 12).

Our spatial ageing clocks can generalize to independent cohorts
of mice, to external spatial transcriptomics datasets with only partial
gene overlap, across sex, across brainregions, and to other single-cell
transcriptomics technologies (Fig. 2f).

Spatial ageing clocks record rejuvenation

Several interventions restore aspects of brain functionin old age
We explored whether spatial ageing clocks could provide a scalable way
of assessing the effect of ‘rejuvenating interventions’ across different
celltypes and regions of the brain. To test this possibility, we generated
additional MERFISH spatial transcriptomics datasets using coronal

30,31
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brain sections from young and old mice in response to two rejuvenating
interventions: voluntary exercise and partial reprogramming (that s,
cyclicin vivo expression of the Yamanaka factors Oct4, Sox2, Klf4 and
Myc (OSKM)) (Fig.3aand Methods). We chose these two rejuvenating
interventions because they are thought to affect many cell types and
probably have different modes of action®* (systemic for exercise
versus cell-intrinsic for partial reprogramming).

Theexerciseintervention dataset yielded more than 900,000 cells,
whichclusteredinto18 cell types (Fig.3b and Extended DataFig.7a). The
partial reprogramming intervention dataset yielded more than 1 million
cellsthat clusteredinto 15 cell types (T cells, B cells and neutrophils were
notidentified, probably because of reduced infiltratingimmune cells
in this model®) (Fig. 3c and Extended Data Fig. 7b). The exercise and
partial reprogramming interventions did not have a significant effect
oncell-type proportioninold mice (Extended DataFig.7c,d), although
the detection of such changes may be limited by the low sample size.

We applied our spatial ageing clocks to assess which brain cell types
and regions exhibit the greatest transcriptomic rejuvenation (that is,
exhibiting ayounger predicted age withintervention than the control)
by exercise and partial reprogramming.

Our spatial ageing clocks indicated that the transcriptomes of several
cell types were rejuvenated by exercise, including endothelial cells
(medianrejuvenation of 4.9 months), pericytes (median rejuvenation of
3.4 months) and VSMCs (median rejuvenation of 4.7 months) (Fig. 3d,f
and Supplementary Table12). These strong rejuvenating effects on cells
of the brain vasculature were present across multiple brain regions
(except forthe VEN) (Fig. 3f), consistent with a systemic effect of exer-
cise. The strong response of the brain vasculature to exercise may be
linked to exposure to circulating blood factors, which mediate some
effects of exercise®**, and to generation of new blood vessels in the
brain upon exercise®**. Gene set enrichment analysis revealed that
genesthat were downregulated by exercise were significantly enriched
for cell junction and focal adhesion processes in endothelial cells in
therejuvenated regions, but notinthe VEN (Supplementary Table 13),
consistent with the region-specific rejuvenation of endothelial cells
by exercise. Neuroblasts also exhibited region-specific rejuvenation
by exercise (Fig. 3f). Whereas neuroblasts are present in the VEN and
adjacent regions such as the corpus callosum (CC), they only showed
strong rejuvenation by exercise near the CC (Fig. 3f), perhaps because of
the presence of specific growth factorsin this region. Overall, exercise
hasastrongrejuvenating effect onthe brain, consistent with previous
studies®**, and this beneficial effect is particularly pronounced in brain
vasculature cells and neuroblasts in specific brain regions.

Our spatial ageing clocks also revealed that the transcriptomes of a
few cell types were rejuvenated by partial reprogramming, including
NSCs (median rejuvenation of 2.7 months) and neuroblasts (median reju-
venation of 2.8 months) (Fig. 3e,g; statistical analysis in Supplementary
Table12), consistent with the restoration of neural progenitors by partial
reprogramming®. In general, rejuvenation by partial reprogramming
was weaker than rejuvenation by exercise (Supplementary Table 12).
Ependymal cells exhibited region-specific rejuvenation near the CC
butnotinthe VEN or near the STR (Fig. 3g). By contrast, other cell types
(mediumspiny neurons, microgliaand glial cells) were prematurely aged
across multiple brain regions in response to partial reprogramming
(Fig. 3g). Thus, partial reprogramming may have both beneficial and
detrimental effects on the brain, depending on the cell type.

Our spatial ageing clocks reveal the specific cell types and regions
most affected by two different rejuvenating interventions, highlighting
potentially complementary modes of rejuvenation.

Spatial ageing clocks record disease

We next applied our spatial ageing clocks to compare the effects of
interventions and diseases that are known to be detrimental to the
brain.



Fig.3|Effects of rejuvenationstrategies, inflammationand diseaseon
spatial single-cell ageing. a, Experimental design for exercise and whole-body
partial reprogramming as rejuvenating interventions. b,c, UMAP visualization
ofall cells coloured by cell type (left) and visualization under spatial coordinates
forallcellsin one representative coronal section (right) from the exercise
experiment (b) and from the whole-body partial reprogramming experiment
(c).Brainregions are annotated. d,e, Density of predicted ages across different
experimental conditions for spatial ageing clocks correspondingto three cell
typesrejuvenated by exercise (d) and three cell types rejuvenated by whole-body
partial reprogramming (e). f,g, Heat maps showing the effect of rejuvenating
interventions on predicted age for different cell types and regions, measured
asthedifferencein median predicted age betweenintervention and control
conditions for old mice, under exercise (f) and whole-body partial reprogramming
(g). Celltypes andregions with insufficient numbers of cells (<50) are denoted

We analysed a publicly available MERFISH spatial transcriptomics
dataset of brain sections containing parts of the CTX, STRand CC from
mice subjected to systemicinflammatory challenge following injection
of lipopolysaccharide (LPS) asamodel of accelerated ageing" (Fig.3h).
Spatial ageing clocks revealed that several cell types, including glial cells
(astrocytes, oligodendrocytes and OPCs) and microglia exhibited accel-
erated ageinginresponse to LPS (Fig. 3i and Extended DataFig. 8a). The
effect of LPS on the predicted age of astrocytes was highly specific to
the cortical regions, whereas the effect of LPS on oligodendrocytes,
OPCs and microglia was present across multiple brain regions (Fig. 3i
and Supplementary Table12). The accelerated transcriptomic ageing
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by ‘X’.Insets show spatial visualization of cellsin an exampleintervention sample
coloured by their difference from the median predicted age in the control
condition, with endothelial cells (f) and NSCs (large dots) and VLMCs (small grey
dots) (g). h, Schematic of cohorts from publicly available spatial transcriptomics
datasets for systemic inflammatory challenge by LPS injection' and for the
Alzheimer’s disease model®. i,j, Heat maps showing the effect on predicted age
for different cell types and regions, measured as the difference in median
predicted age betweenintervention and control conditions for systemic
inflammatory challenge by LPS injection (i) and the Alzheimer’s disease model (j).
Celltypes and regions withinsufficient numbers of cells (<50) are denoted by ‘X'.
Insets show spatial visualization of cellsin an example intervention sample
coloured by their difference from the median predicted age in the control
condition, with OPCs (i) and microglia (j).

of oligodendrocytes and OPCs may be driven by their upregulated
inflammation state under LPS condition (Extended Data Fig. 8b), in
line with reported upregulation of inflammatory (activation) states
of astrocytes and microglia in response to LPSY.

We also analysed a publicly available STARmap spatial transcriptomic
dataset on brain sections containing the hippocampus from mouse
models of Alzheimer’s disease (triple-transgenic TauPS2APP?) (Fig. 3h).
Spatial ageing clocks revealed that most cell types (microglia, neurons
and cells of the brain vasculature) exhibited accelerated transcrip-
tomic ageing in the Alzheimer’s disease model across several brain
regions (Fig. 3j, Extended Data Fig. 8c and Supplementary Table 12).
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The strongly accelerated transcriptomic ageing of microgliain Alzhei-
mer’s disease is consistent with the enrichment of disease-associated
microgliain this model*.

For both LPS and Alzheimer’s disease models, application of our
spatial ageing clocks to brain sections from younger mice revealed
similar patternsinaccelerated transcriptomic ageing of cell types, but
the effects were generally more pronounced in older mice (Extended
DataFig.8d,e). These observations suggest that older mice may be more
susceptible to the detrimental effects of inflammation and disease.

Demyelinationinjuryin the brain (including in the context of multiple
sclerosis) has been linked to accelerated brain ageingin humans®°, We
applied our spatial ageing clocks to publicly available datasets on two
different multiple sclerosis mouse models—anin situ sequencing data-
set of global demyelination upon experimental autoimmune encepha-
lomyelitis®® (EAE) and a MERFISH dataset of localized demyelination
injury?. Spatial ageing clocks revealed accelerated transcriptomic
ageing for most cell types, notably microglia, in the global EAE model
compared with control mice across all brain regions (Extended Data
Fig. 8f). By contrast, for localized demyelinationinjury, the greatest age
acceleration was spatially restricted to the site of injury for multiple cell
types (Extended Data Fig. 8g), suggesting that localized interventions
can have a strong and specific effect.

Thus, spatial ageing clocks reveal cell-type-specific and regional
effects of inflammation, neurodegenerative disease and demyelina-
tion injury on the brain, providing a high-resolution foundation for
developing targeted interventions.

Cell proximity effects of brain ageing

We next considered the potential influence of some cells on the age of
neighbouring cells. Using spatial ageing clocks, we quantified the spa-
tial proximity effect of agiven ‘effector’ celltype onthe deviation from
the expected predicted age (‘age acceleration’) of a ‘target’ cell type
(cell proximity effect analysis is described in detail in Methods) (Fig. 4a
and Extended Data Fig. 9a). After computing the proximity effect for
allcombinations of effector and target cell types, we identified 214 dis-
tinct cell-cell proximity effects (Fig.4b and Supplementary Table 14).
Target cells that were most affected by any effector cell include cells
of the VEN (ependymal cells, NSCs and neuroblasts), pericytes and
OPCs (Extended Data Fig. 9b). The proximity effects of effector cell
types were generally similar across different brain regions, although
microgliahad astronger pro-ageing effect on several target cell types
inthe CC/ACO (Extended Data Fig. 9c).

We were particularly interested in effector cells with the strongest
global effect on their neighbours. Notably, T cells had the strong-
est pro-ageing average proximity effect (Fig. 4c and Extended Data
Fig. 9d), and this influence was especially clear on oligodendrocytes
and pericytes (Fig. 4b). The pro-ageing proximity effect of T cells
(which are mostly cytotoxic in the ageing brain; Supplementary
Fig. 6a) was more pronounced in older mice (Extended Data Fig. 9e).
Surprisingly, NSCs had the strongest pro-rejuvenating average proxim-
ity effect (Fig. 4c and Extended Data Fig. 9d), which was particularly
evidenton OPCs and pericytes (Fig. 4b). The pro-rejuvenating proxim-
ity effect of NSCs was more pronounced in younger mice (Extended
DataFig. 9e).

The effects of T cells and NSCs on nearby cells are robust. T cells
remained the most pro-ageing effector cell type and NSCs remained
the most pro-rejuvenating effector cell type even when using different
definitions of cell proximity effect (Supplementary Fig. 6b,c), when
restrictingtoindependent cohorts of the coronal section dataset (Sup-
plementary Fig. 6d,e), and when using other types of spatial ageing
clocks (see Methods, Supplementary Fig. 6f,g). Notably, we verified
that on average, T cells were the most pro-ageing cell type and NSCs
were the most pro-rejuvenating cell type in multiple external datasets
(Extended Data Fig. 9f and Supplementary Table 15).
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The observed proximity effects are unlikely to be confounded by
changes in cell-type proportion with age. Randomly permuting the
spatial locations of all cells within subregions of each sample resulted
in the complete loss of the proximity effects of all effector cell types
(Fig.4c), suggesting that cell-type proportion or regional heterogeneity
do notinfluence the magnitude of proximity effects. We also showed
that these proximity effects are unlikely to be confounded by spillover
oftranscripts between nearby effector and target cells (Supplementary
Figs.7 and 8a-c and Methods).

Asexpected, the proximity effects of T cellsand NSCs on neighbour-
ing cells decreased in magnitude over increasing distance between
effector and target cells (Extended Data Fig. 9g). Notably, however,
the pro-ageing effect of T cells on nearby cells generally persisted over
longer distances than the pro-rejuvenating effect exerted by NSCs
(Extended Data Fig. 9g and Supplementary Fig. 8d), perhaps indicat-
ingthatlonger-range pro-ageing T cell effects could be propagated by
more diffusible factors or cascades of events (for example, successive
inflammation of oligodendrocytes).

We next explored whether T cells have a pro-ageing effect on neigh-
bouring cells or are attracted to already aged and inflamed cells (for
example, activated microglia*). To distinguish between these possi-
bilities, we selected the most activated microglia and inflamed oligo-
dendrocytes on the basis of expression of activation and inflammation
signatures respectively (Methods). We observed similar activation/
inflammation signature levels between the most activated microglia
and inflamed oligodendrocytes that were near or far from T cells
(Extended Data Fig. 10a), although activated microglia and inflamed
oligodendrocytes tended to be spatially closer than other cell types to
T cells (Extended Data Fig. 10b,c). Crucially, we observed that T cells
still had strong pro-ageing proximity effects on oligodendrocytes or
microglia evenafter controlling for activation and inflammation status
(Extended Data Fig. 10d). Together, these results suggest that T cells
promote the ageing of nearby cells, independent of their activation/
inflammation state.

We also interrogated whether NSCs have a pro-rejuvenating effect
on neighbouring cells or whether cells near NSCs mostly originate
from newborn cells and would therefore be predicted to be younger.
We compared the NSC proximity effect across differentiated cell types
in the NSC lineage (astrocytes and oligodendrocytes) and differenti-
ated cell types notin the NSC lineage (microglia, endothelial cells and
pericytes) (Extended Data Fig. 10e). NSCs exerted similarly strong
pro-rejuvenating effects on all target cell types, including those from
adifferent cell lineage altogether, suggesting that the NSC proximity
effectis not limited to newborn cells in the NSC lineage and extends
to other cells (Extended Data Fig. 10e).

Finally, we tested whether these proximity effects canbe modulated
by interventions to rejuvenate the brain. Using our spatial transcrip-
tomics dataset on exercise (see Fig. 3a), we first confirmed that the
spatial pro-ageing proximity effect of T cells was higherin old seden-
tary mice than young sedentary mice, and that the pro-rejuvenating
effect of NSCs was less pronounced in old mice (Extended Data
Fig.11a,b). Of note, the pro-ageing proximity effect of T cells was
reducedinold mice whensubjected to voluntary exercise (Extended
DataFig.11a). The NSC proximity effect was shifted in arejuvenating
manner by voluntary exercise in old mice (Extended Data Fig. 11b).
This strong shift in the pro-rejuvenating NSC proximity effect with
exercise occurs in the absence of intrinsic rejuvenation of NSCs by
exercise (see Fig. 3f), suggesting that proximity effects can provide a
complementary perspective onintervention outcomes. By contrast,
we did not observe a substantial influence of partial reprogramming
onspatial proximity effects (Extended Data Fig.11c), perhaps because
of the cell-intrinsic nature of thisintervention. Thus, the pro-ageing
proximity effects of T cells and the pro-rejuvenating proximity effects
of NSCs can be modulated by rejuvenating interventions such as
exercise.
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cellsto compute the proximity effect of effector cellson the age acceleration
oftarget cells. b, Heat map showing the proximity effect for different cell-type
proximity relationships. Columns show the 14 target cell types with high-
performing spatial ageing clocks. Proximity relationships for which there are
insufficient cell pairings (<50) to compute a proximity effect are denoted by ‘X'.
Colourbaristrimmed at top 2% absolute proximity effect values. ¢, Average
proximity effect foragiven effector celltypeonall other target cell types ranked
from most pro-ageing to most pro-rejuvenating (left) and median average
proximity effects of effector cell types computed after spatial permutation
ofall cells within subregions across each section (right). Error bars show 95%

Deep graph modelling of proximity effects

A key step in understanding the role of specific cells on their neigh-
boursis to study perturbations. To test the effect of in silico cell-type
perturbations involving T cells and NSCs on the ageing of nearby
cells, we used a deep learning approach. We trained a graph neural
network (GNN) model on local cell graphs extracted around centre
cells to predict neighbourhood ageing, defined as the average age
acceleration of all nearby cells, using only the cell type and graph con-
nectivity as features (Fig. 4d and Methods). Using this GNN model, we
performedboth‘loss-of-function’ and ‘gain-of-function’in silico manip-
ulations by permuting the cell type of the centre cell and measuring
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Effect on neighbourhood ageing
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Replace cell type Replace with cell type

confidenceinterval across 20 spatial permutations. d, Scheme for in silico
cell-type perturbation experiments using GNN models trained to predict
neighbourhood ageing fromlocal cellgraphs. e,f, Effect of perturbing effector
celltypes onneighbourhood ageing. e, Perturbations that replace the effector
celltype with another cell type (loss of function) forn=1,611T cell,n=1,623
endothelial celland n=2,833 NSClocal cellgraph perturbations. f, Perturbations
thatreplace another cell type with the effector cell type (gain of function) for
n=26,685Tcell,n=26,675endothelial celland n=25,469 NSClocal cellgraph
perturbations. Thelineindicates the median, theinner box corresponds to
25thand 75th percentiles, and the whiskers spanup to 1.5 times the interquartile
range of the effects. Two-sided Mann-Whitney test.

the effect on neighbourhood ageing. Replacing a T cell with another
cell (loss-of-function experiment) led to decreased neighbourhood
ageing (Fig. 4e), whereas replacing an NSC with another cell resulted
inincreased neighbourhood ageing (Fig. 4e). Conversely, replacing
any cell with a T cell (gain-of-function experiment) led to increased
neighbourhood ageing (Fig. 4f), whereas replacing any cell with an
NSC resulted in decreased neighbourhood ageing (Fig. 4f). We veri-
fied that in both setups, the replacement or addition of a neutral cell
type (endothelial cells) did not substantially affect the neighbourhood
ageing (Fig. 4e,f). Together, these insilico perturbations confirm that
T cellshave a pro-ageing effect on their neighbours, whereas NSCs have
apro-rejuvenating effect on their neighbours.
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Potential mediators of proximity effects

We next investigated potential mediators of the pro-ageing effect
of T cells or the pro-rejuvenating effect of NSCs on nearby cells. We
assessed global changes in gene expression in the more pro-ageing
T cells or the more pro-rejuvenating NSCs and in their neighbours.
Toaugment the 300 genes measured through MERFISH to more 12,000
genes, we used TISSUE? with single-cell RNA-seq datasets to perform
uncertainty-aware spatial gene expressionimputation (Extended Data
Fig.12a-cand Methods). We first conducted unbiased differential gene
expression analysis using all imputed genes and then did targeted
comparisons of imputed gene signatures or individual genes related
to the most enriched signatures (Methods). This approach augments
our limited gene panel to screen for potential mediators of the T cell
and NSC proximity effect.

T cell effect via interferon signalling

Our unbiased differential gene expression analysis on more than12,000
genesrevealed thatcellsnear T cells have increased expression of genes
associated with viralimmune response (Fig. 5a), perhapsinresponse to
interferonsignalling. Indeed, T cells with agreater pro-ageing proximity
effect exhibited increased expression of imputed gene signature for
‘positive regulation of type Il interferon production’ compared with
T cellswith less pro-ageing proximity effect (P=0.026, two-sided TISSUE
t-test, Fig. 5b). Consistently, the more pro-ageing T cells are more acti-
vated thantheir less pro-ageing counterparts (Extended DataFig.12d),
with T cellactivation beinglinked toincreased interferon gamma (IFNy)
production*>*, T cells with greater pro-ageing proximity effect did
not upregulate other candidate inflammatory production pathways,
such as ‘positive regulation of type l interferon production’ (P=0.14,
two-sided TISSUE t-test), ‘positive regulation of tumor necrosis fac-
tor production’ (P=0.47, two-sided TISSUE t-test), and ‘interleukin-6
production’ (P=0.22, two-sided TISSUE ¢-test). Consistent with the
increased production of IFNy pathway in effector T cells, target cells near
T cells exhibited concomitantincrease in expression of IFNy response
genes (Bst2, P=2.9x107"; Statl, P= 4.4x107%; two-sided Mann-Whitney
tests) (Fig. 5¢). Target cellsnear T cells also showed increased expression
of imputed gene signature for ‘cellular response to type Il interferon’
(P=2.3x107*, two-sided TISSUE ¢t-test) compared with target cells far
from T cells after matching by cell type and subregion (Fig. 5c).

We next explored whether conditions that lower IFNy in T cells
modaulate their proximity effects. We used the MERFISH dataset on
LPS injection", as LPS is known to dampen T cell activation and IFNy
secretion®*, among other effects. In line with published findings, we
observed significantly reduced scaled log-normalized expression of
Ifngin the LPS condition compared with control (P<107%, two-sided
Mann-Whitney U-test). Notably, the LPS condition was associated with
anattenuationof'the T cell pro-ageing proximity effect (Extended Data
Fig.12e). Together with the unbiased gene expression analysis, these
datasuggest arole for IFNy in mediating the T cell proximity effect.

For experimental validation, we performed immunofluorescence
staining on coronal brain sections of old (28 months) male mice using
antibodiesto the T cellmarker CD3 and the interferon-response marker
STAT1, amarker thatis also linked with inflammation-dependent age-
ing*® (Methods). We observed significantly higher STATL intensity in
cells near T cells (CD3" cells) compared with cells that were not near
Tcells,across the CC (P=0.016, two-sided Mann-Whitney U-test), CTX
(P=0.0078, two-sided Mann-Whitney U-test) and VEN (P=0.0078,
two-sided Mann-Whitney U-test) and a trending increase in the STR
(P=0.078, two-sided Mann-Whitney U-test) (Fig. 5d,e and Extended
Data Fig. 12f). These findings experimentally validate that the T cell
proximity effectis associated with upregulated interferonresponsein
nearby cells and raise the possibility that interferon signalling might
mediate the pro-ageing proximity effect of T cells.
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Mediators of the pro-rejuvenating effect of NSCs

Our unbiased differential gene expression analysis on more than12,000
genes revealed that cells near NSCs exhibited upregulation of genes
associated with endocytic pathways and lipid metabolism (Fig. 5f). We
thereforeinvestigated components of the NSC secretome with known
effects on lipid metabolism or endocytosis, whichinclude extracellu-
lar vesicles (exosomes)*~'and growth factors®*. NSCs with greater
pro-rejuvenating proximity effects exhibited increased expression
of imputed gene signatures for ‘exocytosis’ (P = 0.014, two-sided TIS-
SUE ¢t-test) and ‘exosomal secretion’ (P = 0.044, two-sided TISSUE
t-test), increased expression of the exosome marker Cd9 (P=0.019,
two-sided Mann-Whitney test), and trending increased expression
of the growth factor gene Vegfa (P=0.059, two-sided Mann-Whitney
test), which is the only gene encoding an NSC-secreted growth fac-
tor in the MERFISH panel (Fig. 5g). Exosomes have been implicated
in neurogenesis* and could mediate the pro-rejuvenating effect of
NSCs on their neighbours. The increase in Vegfa is notable in light
of its effect on the maintenance of neurogenic niche cells***® and on
organismal longevity*®. NSCs with greater pro-rejuvenating proxim-
ity effect also showed upregulation of pathways associated with cell
proliferationand DNA replication (Extended Data Fig.12g), which can
be regulated by NSC-derived exosomes®. Concomitantly, cells near
NSCs exhibited increased expression of imputed gene signatures for
cellimport and endocytosis (‘caveolin-mediated endocytosis’, P=
1.9 x 1075; ‘receptor-mediated endocytosis’, P=7.2 x 1073; ‘import
across plasmamembrane’, P= 0.017; two-sided TISSUE ¢-test) and cel-
lular response to multiple growth factors (VEGF, P=5.5 x 10, FGF, P=
3.3x107%; TGFP1, P=7.0 x107'°; two-sided TISSUE ¢-tests) compared
with cells far from NSCs, after matching by cell type and subregion
(Fig. 5h). Cells near NSCs also showed increased expression of a sig-
nature for NADH metabolism ‘NADH metabolic process’ (P=1.5x107°,
two-sided TISSUE ¢-test), whichis linked to fatty acid oxidation metabo-
lism and more youthful brain states®®* (Fig. 5h).

We experimentally validated that the NSC proximity effect is associ-
ated with exosomes in NSCs and upregulated fatty acid oxidation in
nearby cells. We performed immunofluorescence staining on brain
sections of young (3.5 months) male mice using antibodies to the
NSC marker S100A6%*, the exosome marker CD9% and the fatty acid
oxidation marker CPT1A®*", a marker that is linked to improved cell
function®®. NSCs (SI00A6" cells) had significantly higher CD9 intensity
thanother cell types (‘non-NSCs’) in the VEN of young mice (P= 0.0079,
two-sided Mann-Whitney U-test) (Fig. 5i-k and Extended Data Fig.12h).
Of note, cells near NSCs exhibited significantly higher CPT1A intensity
than cells that were not near NSCs in the VEN (P = 0.016, two-sided
Mann-Whitney U-test) (Fig. 5i,j,1 and Extended Data Fig.12h). The CD9
intensity of NSCs and the CPT1A intensity in nearby cells were positively
correlated (Pearson correlationr = 0.35, Spearman correlationp = 0.36)
(Fig.5m). These experimental results support an association between
increased exosome marker intensity in NSCs and upregulated fatty acid
oxidation in nearby cells and raise the possibility that these changes
might mediate part of the pro-rejuvenating proximity effect of NSCs.

Our results suggest the following model (Extended Data Fig. 12i):
T cells have a strong pro-ageing effect on nearby cells and infiltrate
the brain during ageing. These T cells express IFNy*?*%°, which may
actonnearby cells in a pro-ageing manner by inducing inflammatory
responses. By contrast, NSCs have a strong pro-rejuvenating effect
on nearby cells and decline in number with age. NSCs may secrete
growth factors and exosomes that could act on nearby cells in a
pro-rejuvenating manner, in part by modulating lipid metabolism.

Discussion

Our study provides a high-resolution spatiotemporal profiling of
the ageing mouse brain, which enables tracking of gene expression
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trajectories during ageing in different regions and cell types. We use
this dataset to generate spatial ageing clocks and, in turn, quantify the
region-specific and cell-type-specific effects of different rejuvenat-
ing interventions or disease models. Spatial ageing clocks should be

Two-sided Wilcoxon signed-ranked test. f, Same as abut for cells near NSCs
compared with cellsthat are far from NSCs. g,h, Same asb,cexcept forimputed
signatures and measured genes (Cd9 and Vegfa) in more pro-rejuvenating NSCs
compared withless pro-rejuvenating NSCs (g) and imputed signaturesin cells
near NSCs compared with cells far from NSCs (h). i,j, Immunofluorescence
images fromayoung (3.5 months) male mouse highlightingincreased CPT1A
labellingin cells near NSCs (S100A6*) with high CD9 fluorescence (i) compared
with cells not near NSCs (j) inthe VEN. Arrows indicate NSCs and starsindicate
cellsthatare not near NSCs. Scale bars, 10 pm. k, Mean CD9 intensity of NSCs
(S100A6%) compared with non-NSCs (S100A6°) forindependent young (3.5 months)
male mice (n=>5) across one experiment (Methods). Two-sided Mann-Whitney
U-test.1,Mean CPT1A intensity of cells near NSCs compared with cells thatare
notnear NSCs forindependent mice (n =5) (Methods). Two-sided Mann-Whitney
U-test.m, Scatter plot with density contours of CPT1A intensity as a function of
CD9intensity of nearest NSC (S100A6%) for all cells near NSCs. Pearson (r) and
Spearman (p) correlations are shown.

helpful to rapidly assess the effect of experimental interventions on
ageing and other temporal processes at spatial and single-cell resolu-
tion. Our flexible machine learning framework for building spatial
ageing clocks and modelling cell proximity effects could be adapted
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toother tissues and species. The development of new statistical meth-
odologies or experimental approaches to enhance the causality and
dimensionality of ageing clock predictions could further broaden the
usage of these models.

We use these spatial ageing clocks here to quantify cell proxim-
ity effects. Systematic profiling with a larger gene panel and deeper
imaging for spatial transcriptomics may enable the segmentation of
long-range neuronal projections to provide greater resolution on the
proximity effects of some cell types, particularly neurons. Although
we identify potential mediating pathways for cell proximity effects,
deeper and more functional studies with specific cellular readouts will
beneededto provide abetter understanding of the mode of action and
its biological effects. For example, different types of T cells can have
beneficial or detrimental effects on the brain®>*4%°"”° particularly in
response toinjury or disease>**707277 Djsentangling the proximity
effect of heterogeneous T cell populations in different regions could
further enrich our understanding of how T cells influence brain ageing.
Finally, it will be interesting to determine how some newborn cells in
the brain (NSCs and neuroblasts) exert their pro-rejuvenating effects
on their neighbours, whether extracellular vesicles are involved, and
whether this could beimplementedin other regions that do not contain
stem cells. Ultimately, broader investigation into proximity effects
and their mediators will be critical and may lead to new therapeutic
strategies for improving brain resilience during ageing.
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Methods

Animals

All procedures involving mice were performed according to proto-
colsapproved by the Stanford University IACUC and APLAC (protocol
no. 8661) and VA Palo Alto Committee on Animal Research ACORP
(LUO1736).For the ageing cohort and exercise cohort, male C57BL/6JN
mice were obtained from the National Institute on Aging (NIA) Aged
Rodent colony. For the whole-body partial reprogramming cohort,
male whole-body inducible OSKM (iOSKM) mice (ROSA26(rtTA-M2);
Collal(tetO-OSKM)) (on a mixed background of the following strains:
C57BL/6,B6D2F1,129S4 and B6129SF1/)) were generated from the Jae-
nisch laboratory® and obtained from the Jackson Laboratory (JAX
011004). Mice were housed in groups of 3-5 mice of the same age at
the ChEM-H/Neuro vivarium (ageing and partial reprogramming) or
at the Veterinary Medical Unit at the Veterans Affairs Palo Alto Health
Care System (exercise) under 12-h light/dark cycles, approximately
21°C ambient temperature, and approximately 50% humidity for at
least 3 weeks before any experiments or sample collection occurred.

Ageing coronal and sagittal cohorts

We used two independent ageing cohorts of male C57BL/6JN mice
(referred to as ageing cohort 1and ageing cohort 2). Ageing cohort 1
included mice of the following ages for the coronal section dataset:
3.8,5.4,9.8,12.9,15.5,21.4,23.5,26.7,30.9 and 33.2 months. Ageing
cohort1also included mice of the following ages for the sagittal sec-
tiondataset: 3.8 and 26.7 months. Ageing cohort 2 included mice of the
following ages for the coronal section dataset: 3.4, 4.3, 6.6,15.8,18.8,
19.8, 24.6, 28.5, 32.6 and 34.5 months. Ageing cohort 2 included mice
of the following ages for the sagittal section dataset: 6.6, 8.6,19.8 and
23.5months. Information onall mice in the ageing cohorts is provided
inSupplementary Table 4.

Exercise experiment

The exercise experiment included 3 groups of male C57BL/6JN mice:
4young (3 months) sedentary mice, 4 old (19 months) sedentary mice,
and 4 old (19 months) exercise mice. Information on all mice in the
exercise experimentis provided in Supplementary Table 4. Sample sizes
were selected to allow testing of statistically significant differences
of mouse-level attributes (for example, cell-type proportion) using
the non-parametric two-sided Mann-Whitney U-test across groups.
Littermates were randomized for exercise and sedentary conditions.
Themiceinthe old exercise group were provided with voluntary wheel
running throughindividual housing for 5weeks in polycarbonate cages
with12.7 cm diameter running wheels (Lafayette Instrument, 80820)
and monitored weekly for adequate running. The five-week duration
of voluntary exercise was selected based on published regimens for
efficacy®®®, Sedentary mice were individually housed in identical ages
without running wheels.

Whole-body partial reprogramming experiment

Thewhole-body partial reprogramming experimentincluded 3 groups
of maleiOSKM mice (on a mixed background of the following strains:
C57BL/6,B6D2F1,12954 and B6129SF1/)): 4 young (4.8-4.9 months)
control mice, 4 old (25.6-29.2 months) control mice, and 4 old (26.5-
29.2 months) OSKM mice. Information onall mice in the partial repro-
gramming experiment is provided in Supplementary Table 4. Sample
sizes were selected to allow testing of statistically significant differ-
ences of mouse-level attributes (for example, cell-type proportion)
using the non-parametric two-sided Mann-Whitney U-test across
groups. Old mice were matched by age and body weight and then
randomized to control and OSKM conditions. All mice (control and
OSKM) were individually housed during the experiment. The mice
in the old OSKM group underwent three periods of cyclic induction
of OSKM by doxycycline treatment, which consisted of doxycycline

administration in the drinking water for two days (ON), followed by
five days without doxycycline administration (OFF) and repeated for
3 weeks (ON-OFF-ON-OFF-ON) with mice euthanized at the end of
the last doxycycline administration treatment. Doxycycline (Fisher
ICN19895505) was dissolved in drinking water (1 mg ml™), placed in
amber water bottles to protect the solution from light, and provided
ad libitum to the mice in the old OSKM group.

Sample collection

Mice were euthanized to collect fresh frozen whole-brain samples for
MERFISH experiments. Mice were euthanized with 5 min of exposure
ina CO, chamber, and brains were removed and placed ina cryomold
oniceandfilled with pre-chilled Optimal Cutting Temperature (OCT)
Compound (Fisher Healthcare Tissue Plus, 4585) and then placed on
dryice. After OCT solidified, the samples were moved to long-term
storage at —80 °C. RNaseZap (Invitrogen, AM9780) was used to dis-
infect all dissection tools before and after each mouse. The sample
collection for ageing cohort 1 occurred on 4 November 2022 from
14:00-15:30 pm Pacific Standard Time (PST) and the sample collec-
tionforageing cohort2 occurred on28 June 2023 from 14:30-16:15PST.
Sample collection alternated between younger and older mice. For the
exercise experiment, mice were perfused with 15 ml of PBS with heparin
sodium salt (50 U mlI™) (Sigma-Aldrich, H3149-50KU) before sample
collection. Sample collection for the exercise experiment occurred
on 6 June 2022, and sample collection for the partial reprogramming
experiment occurred on 28 June 2023. Sample collection alternated
between mice from different experimental conditions.

MERFISH 300-gene panel selection

We selected 300 genes to profile for the MERFISH experiments. Our
selected 300-gene panel consists of 129 cell-type and subtype mark-
ers (81 cell-type markers, ranging from 1to 8 markers per cell type;
48subtype or function-related markers) as well as 181 genes of interest
that have been implicated in ageing-related pathways, in important
processes not previously linked to ageing, as well as genes identified
by analysis of single-cell RNA-seq atlases of murine brain ageing, with
10 genes shared across cell-type and subtype markers and genes of
interest (Supplementary Table1).

The cell-type and subtype marker genes included all markers in
asuggested panel by Vizgen; markers determined from literature
review focused on cells of the brain vasculature®®*3, NSCs and neuro-
blasts**#%5, and immune cells>**¢%, For these 129 cell-type or subtype
markers, wealsoincluded several NSC and neuroblast markers obtained
fromintegrated differential gene expression analysis across multiple
single-cell RNA-seq datasets of the adult mouse subventricular zone>*,
We included markers for the following cell types: excitatory neurons,
inhibitory neurons, medium spiny neurons, astrocytes, microglia,
oligodendrocytes, OPCs, endothelial cells, pericytes, VSMCs, VLMCs,
ependymal cells, neuroblasts, NSCs, macrophages, neutrophils, T cells,
B cells, natural killer (NK) cells, mast cells and dendritic cells.

Forthe ageing-related genes, weincluded aset of 33 genesrelated to
murine ageing selected from the GenAge model organism database®
(accessed 7 September 2022) (Supplementary Table 1) to enrich for
genes known to have a causal role in ageing, whichis helpful for build-
ing more causal ageing clocks®*®°, We further included genes related
to T cell activity?, subventricular zone NSC heterogeneity®, endothe-
lial heterogeneity®’, meningeal lymphatics functions®>%, cellular
senescence, immune response, stem cells, neurogenesis® and vascu-
logenesis®. We also included sets of expert-curated genes pertaining
to interesting cellular and organismal functions, some of which have
emergingrolesintheregulation of ageing but are not well studied yet,
including T cell signalling, reprogramming, cell adhesion and migra-
tion, lipid metabolism and neuropeptide signalling. Finally, foramore
unbiased set of genes, we included several differentially expressed
genes (DEGs) between young and old mice for cell types across three



single-cell transcriptomics datasets of the subventricular zone** and
two multi-region brain single-cell transcriptomics datasets>’.

We ensured that all selected genes in the MERFISH panel were
expressed in existing single-cell or single-nuclei RNA-seq brain
atlases**” and met technical constraints for minimizing optical cloud-
ing. This included limiting the total estimated gene expression using
the Vizgen Gene Panel Design Portal to under 9,000 fragments per
kilobase of transcript per million mapped reads (FPKM) (total estimate
at 7,691 FPKM) and limiting the maximum estimated expression per
gene using the Vizgen Gene Panel Design Portal to under 700 FPKM
(maximum per-gene estimate at 452 FPKM). The complete gene panel,
classification of markers, and rationale for inclusion are included in
Supplementary Table1.

MERFISH imaging experiment

The MERFISH experiment was conducted through the Vizgen MER-
SCOPE technology laboratory service. Compared with other spatially
resolved single-cell transcriptomics, Vizgen MERSCOPE technology
has been shown to provide high specificity and sensitivity even with
larger gene panel sizes*. Fresh frozen mouse brain samples were cut
into 10 um-thick sections on a cryostat at —20 °C and placed onto a
MERSCOPE sslide (Vizgen 20400001). We obtain coronal sections that
containthe CTX, STR, CC/ACO and VEN including the subventricular
zone neurogenic niche. We obtain sagittal sections that contain the
aforementioned brain regions along with additional brain regions
(olfactory bulb, rostral migratory stream, brain stem, and cerebel-
lum). Two coronal sections were placed on each slide and paired to
balance ages while sagittal sections were placed on their own slides.
The tissue sections were fixed with 4% paraformaldehyde in 1x PBS for
15 min, washed 3 times with 5 ml 1x PBS and incubated with 70% etha-
nol at 4 °C overnight for tissue permeabilization. Samples were then
stained for cellboundary using Cell Boundary Kit (Vizgen,10400009),
and later hybridized with a custom designed MERSCOPE Gene Panel
Mix consisting of 300 genes (Vizgen 20300008) in a 37 °C incuba-
tor for 36-48 h. Following incubation, the tissues were washed with
5 mlformamide wash buffer at 47 °C for 30 min, twice and embedded
intoahydrogel using the Gel Embedding Premix (Vizgen 20300004),
ammonium persulfate (Sigma, 09913-100 G) and TEMED (N,N,N’,
N’-tetramethylethylenediamine) (Sigma, T7024-25ML) from the MER-
SCOPE Sample Prep Kit (10400012). After the gel mix solution solidi-
fied, the samples were cleared with clearing solution consisting of
50 pl Proteinase K (NEB, P8107S) and 5 ml of Clearing Premix (Vizgen
20300003) at 37 °C overnight. After removing clearing solution, the
sample was stained with DAPI and Poly T Reagent (Vizgen 20300021)
for 15 min at room temperature, washed for 10 min with 5 ml of For-
mamide Wash Buffer, and then imaged on the MERSCOPE system
(Vizgen10000001). A fully detailed, step-by-step instruction on the
MERFISH sample prep the full protocol is available at https://vizgen.
com/resources/fresh-and-fixed-frozen-tissue-sample-preparation/.
Full instrumentation protocol is available at https://vizgen.com/
resources/merscope-instrument/. The MERFISH data were collected
over two separate batches (see ‘slide_id’ in Supplementary Table 4).
Thefirstbatch, A, included ageing cohort1(both coronal and sagittal)
and half of the exercise experiment samples with even representation
across conditions. The second batch, B, included ageing cohort 2 (both
coronal and sagittal), the remaining half of the exercise experiment
samples, and the partial reprogramming experiment samples.

Cell segmentation and MERFISH data preprocessing

Segmentation of cells was performed using Cellpose (1.0.2) through
Vizgen’s laboratory service. Cell segmentation was implemented on
images using nuclear staining (DAPI) and cytosolic staining (Poly T).
Transcripts were allocated using these cell segmentations by sum-
mingacross seven z-stacks, accounting for both nuclear and cytosolic
(soma) transcripts. Quality control statistics were computed using the

Vizgen post-processing tool (vpt) (1.2.2) for cell segmentation (Sup-
plementary Table 2).

For preprocessing, we performed initial cell filtering separately for
each MERFISH experiment (consisting of either two coronal sections
on the same slide or one sagittal section). For each experiment, we
removed putative doublets using Scrublet” and a doublet score cutoff
of 0.18. We then filtered out all cells with segmentation volume less
thanorequal to 100 pm?or greater than or equal to 3 times the median
cell volume. We alsofiltered out all cells with fewer than or equal to 20
counts and/or fewer than or equal to 5 genes with non-zero expression.
To correct for potential different segmentation sizes, we divided the
raw transcript counts obtained for each cellin the MERFISH dataset by
the volume of the corresponding segmentation. After combining all
experiments into an integrated dataset, we then filtered out all cells
in the top 2% highest and top 2% lowest total expression. Statistics
associated for the aforementioned cell filtering steps and for additional
steps after clustering can be found in Supplementary Table 3. To obtain
log-normalized gene expression values, we normalized the total gene
expression for each cell to 250 and log-transformed the expression
with anadded pseudocount. This procedure was performed separately
for the ageing cohorts (coronal), ageing cohorts (sagittal), exercise
experiment and partial reprogramming experiment.

Cell-type clustering and identification

For clustering, we converted each log-normalized gene expression value
to a z-score using scanpy.pp.scale with max_value =10 in the scanpy
package®®. We performed Leiden clustering using scanpy.tl.leiden with
resolution=0.5for theinitial clustering and default settings otherwise.
We obtained batch-balanced nearest neighbours graph using BBKNN
(scanpy.external.pp.bbknn) and then used this neighbours graph to
generate a UMAP visualization of all cells (scanpy.tl.umap). For the
partial reprogramming experiment, which only involved one batch
of MERFISH data, we used scanpy.pp.neighbors with n_pcs=20 and
n_neighbors=15instead of BBKNN. To annotate cell types, we manually
labelled each cluster based on cell-type expression patterns as observed
across two orthogonal data visualization modalities (the UMAP visuali-
zation and a heat map of cell-type markers) to reduce errorsincell-type
annotation resulting from dimensionality reduction distortions®*%, For
clusters thatexpressed markers from multiple cell types, we performed
successive Leiden clustering on those clusters until unique cell types
could be annotated (see Supplementary Table 5). This procedure was
performed separately for the ageing cohorts (coronal), ageing cohorts
(sagittal), exercise experiment, and partial reprogramming experiment.
A detailed description of the cell-type markers and Leiden clustering
resolutions for each dataset and cell type can be found in Supplemen-
tary Table 5. Although a small set of markers for some rare immune cell
types (NK cells, mast cells, dendritic cells) were included in our MERFISH
panel (Supplementary Table 1), we were unable to identify these cell
typesin any of the datasets (Supplementary Table 5), probably owing
to their low abundance. NK cells, mast cells, and dendritic cells were
also not identified in several existing spatial transcriptomics studies
of adult mouse brain**, NK cells and dendritic cells were identified
inalarge-scale and high-resolution spatial transcriptomic profiling of
the whole adult mouse brain®, although at 3-4 times lower abundance
thanthe rarestimmune cell typesidentified in our datasets (T cellsand
B cells), which may explain why we were not able to identify these cells
in our dataset. In addition, in the partial reprogramming dataset, we
were unable to identify other rare immune cell types (T cells, B cells
and neutrophils), consistent with our previously published dissociated
single-cell RNA-seq datasets® and probably owing to the lower abun-
dance of these cell typesin this partial reprogramming mouse model.

Spatial region and subregion clustering and annotation
Toidentify anatomical regions across the MERFISH datasets and assign
regionand subregion labelsto each cell, we adapted a semi-supervised



Article

approach for clustering and annotating region labels from cell-type
composition of local neighbourhoods around each cell”. For a given
cell, we computed the cell-type abundances for each cell within100 pm
distance fromthegiven cell. Then, we performed principal component
analysis on the matrix consisting of the cell-type abundance profiles
for each cell, applied k-means clustering (k = 25), manually visualized
and merged clusters to obtain seven subregion annotations (CC/ACO,
CTX_L1/MEN, CTX_L2/3, CTX_L4/5/6, STR_CP/ACB, STR_LS/NDB and
VEN), and finally merged subregion annotations to obtain four region
annotations (CC/ACO, CTX, STR and VEN). While we observed some
variability in the subregion annotations between samples, there was
general consistency in the four region annotations. We verified the
expression of cortical layer markersin the three subregions ofthe CTX
(Extended DataFig. 3c,d), but we were unable to annotate each of the
sixknown cortical layerindividually through the clustering procedure,
perhaps owing to thelow number of cortical layer markers. Thisregion
and subregion clustering and annotation procedure was performed
separately for the ageing cohorts (coronal), ageing cohorts (sagittal),
exercise experiment, and partial reprogramming experiment.

Cell-type composition analysis

We computed cell-type proportions for a given sample by dividing
the number of cells of each cell type by the total number of cellsin the
sample. For regional cell-type proportions, we divided the number of
cellsof eachcell typein that region by the total number of cells in that
region. Pearson correlation, 95% confidence interval for the correla-
tion, and P value for association between cell-type proportion and
sample age was computed using scipy.stats.pearsonr. We annotated
strong changesin cell-type proportion with age as cell types with 95%
confidence interval for the correlation that does not overlap with the
interval [-0.25, 0.25]. Strong increases in cell-type proportion with
age (coloured red) had 95% confidence interval for the correlation
with lower bound greater than 0.25, and strong decreases in cell-type
proportion with age (coloured blue) had 95% confidence interval for
the correlation with upper bound less than—0.25. Linear regression of
cell-type proportion on sample age with 95% confidence interval was
computed using seaborn.regplot. To compute statistical significance
of differences in cell-type proportions across categorical conditions,
we used the two-sided Mann-Whitney U-test.

Increasing and decreasing gene expression with age analysis

For a given cell type, to identify genes that changed in expression
with age, we computed the Spearman correlation between age and
pseudobulk gene expression across samples in the coronal section
dataset. The pseudobulk gene expression was computed as the mean
log-normalized gene expression across all cells of the same cell type
withinasample. Foreachgene, we obtained the Spearman correlation,
the associated Pvalue, and the lower and upper bounds of a 95% confi-
dence interval for the correlation. We classified genes as ‘increasing’
if they had Spearman correlation greater than 0.3 and with the lower
bound of the 95% confidence interval greater than 0.0. We classified
genes as ‘decreasing’, if they had Spearman correlation less than -0.3
and with the upper bound of the 95% confidence interval less than 0.0.
To reduce false positives resulting from transcript spillover due to
segmentation, we constrained our analysis to the 220 genes with less
than 5% estimated spillover based on an internal Vizgen metric using
gene expression variations influenced by local cellular composition
(see Supplementary Table 7 for list of genes).

GO enrichment analysis

We performed GO enrichment analysis to determine biological pro-
cesses that were enriched in different sets of genes. For genes that
increase or decrease in expression with age that were identified in
‘Increasing and decreasing gene expression with age analysis’, we per-
formed GO biological process enrichment analysis separately for each

set of genes and for each cell type. For genes in different spatiotem-
poral gene expression trajectory clusters for oligodendrocytes in the
CC/ACOregion (see ‘Spatiotemporal gene expression trajectory analy-
sis’), we performed GO biological process enrichment analysis for all
genes present in each of the nine trajectory clusters separately after
filtering out genes with greater than 5% estimated spillover based on
aninternal Vizgen metric using gene expression variations influenced
by local cellular composition. For GO enrichment analysis on genes
used by the spatial ageing clocks, we selected positive coefficient clock
genes (up to 50 genes with the largest positive coefficients) and nega-
tive coefficient clocks genes (up to 50 genes with the largest negative
coefficients) and performed GO biological process enrichment analysis
separately for each set of genes. For GO enrichment analysis on DEGsin
endothelial cellsinresponse to exercise inold mice, we selected genes
that significantly increased with exercise (increased in old exercise
compared with old sedentary with P < 0.05 from two-sided Mann-
Whitney U-test) and genes that significantly decreased with exercise
(decreased in old exercise compared with old sedentary with P < 0.05
from two-sided Mann-Whitney U-test) and performed GO biological
process enrichment analysis separately for each set of genes.

We performed GO biological process enrichment analysis by select-
ing genes for each analysis (as described above), and using all other
genes measured by MERFISH as background. GO enrichment was per-
formed with topGO™ (R package version 2.54.0) using Fisher’s exact
test for all Biological Process terms.

Regional gene expression changes with age

To compare different anatomic regions and subregions by the magni-
tude of gene expression changes with age, we selected the five youngest
and five oldest mice in the data. For each cell type, we determined the
minimum number of cells present across each of the mice and regions,
excluding the VEN due to their low cell number. We then downsampled
cellsforeach mouse and region, without replacement, to that minimum
number, such that after sampling, all combinations of mouse and region
had the same number of cells. We then excluded cell types in which the
number of cells per mouse and region was less than 20. We calculated
the transcriptional profile for each mouse and region by averaging
across the volume-normalized expression of all cells from that mouse
inthatregion, normalizing this profile to sum to 250, and performing
alog transformation with an added pseudocount. To determine the
change between old and young mice inaspecific region, we subtracted
the mean profile of the 5 young mice from the mean profile of the
5old miceand averaged the absolute value of this difference across all
genes after filtering out genes with greater than 5% estimated spillover
based on an internal Vizgen metric using gene expression variations
influenced by local cellular composition. We repeated this process
20 times, each time sampling different cells.

Spatiotemporal gene expression trajectory analysis

For each cell, we divided the raw transcript counts by the segmenta-
tion volume of the cell and then normalized by total count using the
default settings of scanpy.pp.normalize_total. For each combination
of cell type, anatomic subregion, and gene; we computed a vector of
length 20 (trajectory) containing the mean expression of that gene
in each age conditioned on a specified subregion and cell type. If
the given cell type and subregion combination was not present in at
least 70% of profiled ages, we classified that trajectory as ‘missing’.
We performed last-value-carried-forward imputation to fill in miss-
ing values within trajectories that passed this threshold. Each trajec-
tory was standardized by centring and scaling to unit variance with
sklearn.preprocessing.StandardScaler'®. Then, we performed k-means
clustering using sklearn.cluster.KMeans with n_clusters=9, random_
state=444, n_init="auto’, and the matrix with each row corresponding
to ascaled gene expression trajectory asinput. The parameters of the
clustering were selected to maximize the number of clusters while also



maintaining qualitatively distinct trendsin each cluster (Extended Data
Fig.4a,b). For each cluster of gene expression trajectories, we visualized
the smoothed medianandinterquartile range of the scaled expression
values. Smoothing was done with interpolating B-splines using scipy.
interpolate.BSpline with s = 20. We manually annotated each cluster
based onthe qualitative expression patterns. These trajectory clusters
include genes with expression that increases late in life (‘increasing
late’), increases gradually throughout life (‘increasing gradual’), has
the lowest expression in midlife (‘midlife trough’), peaks in early life
(‘early peak’), peaks in midlife (‘midlife peak’), peaks in late life (‘late
peak’), decreases after midlife (‘midlife decrease’), decreases early inlife
(‘decreasingearly’), and decreases gradually through life (‘decreasing
gradual’). To visualize representative gene expression trajectories for
eachcelltype, we performed the same smoothing procedure separately
foreach cell-type-specific subset of trajectories from the clusters. We
developed this trajectory clustering approach instead of using para-
metric methods (for example, polynomial fitting) to provide a more
unbiased characterization of different trajectories.

SpatialSmooth soft pseudobulking procedure

Foreach cell type, we build spatial graphs connecting each cell withits
20 nearest neighbours by Euclidean distance and of the same cell
type'®. Spatial ageing clock performance was generally robust to the
choice of the number of nearest neighbours (k) in building this graph
(Extended Data Fig. 5a). We computed a L1-normalized adjacency
matrix representing the spatial graph. Then, the SpatialSmooth algo-
rithm propagates gene expression features across the cell-type-specific
spatial graph by iterating the update equation until convergence (that
is, Xer 1= Xp):

X, € (1- @)X +asX,

Where X is theinitial gene expression matrix (cells asrows, genes as
columns), Sisthe normalized adjacency matrix, and ais the smoothing
parameter. We set a equal to 0.8. We set the convergence to be
30 iterations at maximum with a tolerance of 0.01, for which conver-
genceisreachedif||X,,; — X;||_isless than the tolerance or 30 iterations
has elapsed. For rare cell types (for example, T cells, B cells, neutro-
phils), SpatialSmooth generally converged before 30 iterations. For
common cell types (for example, oligodendrocytes, microglia, astro-
cytes), SpatialSmooth was generally performed for 30 iterations. After
convergenceatstep t=T,weuse thesmoothed spatial gene expression
matrix X; as input for training the ageing clocks.

Training and cross-validated evaluation of spatial ageing clocks
For training spatial ageing clocks, we performed the SpatialSmooth
procedure onthelog-normalized gene expression to obtain smoothed
spatial gene expression matrices for each celltypeindependently. Then,
foreach cell type, wefitted a pipeline consisting of standardization of
gene features followed by lasso regression model to predict sample age
from a cell’s gene expression profile and used sklearn.linear_model.
LassoCV to select optimal hyperparameters with cv=5, n_alphas=20,
max_iter=10000. We refer to this entire pipeline from SpatialSmooth
to age prediction as the ‘spatial ageing clock’. To avoid explicit condi-
tioning of age prediction on spatial information, the spatial ageing
clocks only leverage the spatial context to process the input data via
SpatialSmooth.

For cross-validated evaluation of spatial ageing clocks, we held out
asingle sample/age as the test set and kept the remaining samples/
agesasthe train set. SpatialSmooth was performed separately for the
train and test sets. We fitted the lasso regression pipeline to predict
ageonthetrainsetandused the modelto obtain predicted ages onthe
test set. Werepeated this procedure across all samples/ages to obtain
predicted ages for all cellsin the study. Performance was evaluated by
Pearson’s correlation (R) and mean absolute error between the age and

predicted ages of individual cells obtained from cross-validation. We
alsocomputed the Pearson’s correlation (r) between the age and median
predicted ages of individual mice obtained from cross-validation. For
the subregion-specific ageing clocks, we trained and evaluated the
models using the same settings except with five nearest neighbours
for SpatialSmooth and restricted to only cells in each subregion for
training. To compare spatial ageing clocks to cell-type-specific ageing
clockstrained ondissociated single-cell RNA-seq datafrom adult mouse
subventricular zone, we used the median predicted ages associated
with these clocks and data®*.

Visualization of spatial ageing clock predictions

We used two approaches for visualizing the predicted ages obtained
from the application of spatial ageing clocks, either through
cross-validation on the coronal section dataset or directly through
validation on an external dataset.

For datasets with relatively uniform distribution of many ages across
lifespan (that is, the coronal section dataset), we used a correlation
plot visualization consisting of a two-dimensional histogram of cell
frequencies across bins defined by predicted age and actual age that
is visualized as a heat map, a scatter plot of the median predicted age
of cells across each sample as a function of the actual age, and a line
of best fit for the median predicted ages as a function of actual age is
shown in black and computed using numpy.polyfit with deg = 1. This
type of visualization emphasizes the quality of median predicted age
atthesamplelevel across many different actual age values. Generally,
inthis visualization, the range of predicted ages will be larger than the
range of actual ages due to heterogeneity in the predicted ages but not
inthe actual ages of cells from the same mouse. This may be especially
pronounced for highly abundant cell types like excitatory neurons.
Predicted ages obtained from cross-validation using aleave-mouse-out
approach will exhibit some regression to the mean age (that is, cells
fromolder mice predicted to be younger and cells from younger mice
to be predicted to be older) due to different mean actual ages in each
ofthe cross-validation training datasets.

For datasets with bimodal distribution of ages (that is, the sagittal
section dataset) or with three or fewer distinct age groups (that s, all
external datasets), we used a density plot visualization of predicted
ages of cells across different age groups or different experimental
conditions. A kernel density estimate was constructed for each group
of predicted ages using seaborn.kdeplot with default settings. This
type of visualization emphasizes the distribution of predicted agesina
smallnumber of groups at the cell level. For the coronal sections dataset
and sagittal sections dataset, we used both types of representations.

For comparisons of clock performances, we compare the mean abso-
lute error and Pearson correlation between predicted age and actual
age either with respect to the main spatial ageing clocks or between
different data subsets or clocks to make our conclusions.

Application of spatial ageing clocks on external datasets

Toapply the spatial ageing clocks to predict age for cell gene expression
profiles in external spatial transcriptomics datasets, we applied the
following general procedure. First, we filtered the external dataset to
only include genes present in our MERFISH panel of 300 genes and
only celltypesalsorepresented among the spatial ageing clocks. Then,
we normalized and log-transformed the raw expression values using
the same approach as for our MERFISH data and applied SpatialSmooth
(a=0.8)tothelog-normalized values for each cell type independently.
For clock genes thatare not presentin the external dataset, we use the
training data for the clock as reference data in the SpaGE algorithm'®*
(n_pv =15) to impute the expression of the missing genes. Negative
imputed values were clipped to zero. We performed imputation for
genes from our MERFISH panel that were missing from these datasets
(228 genes in the 140-gene MERFISH coronal section dataset, 5 genes
inthe single-nuclei RNA-seq dataset, 36 genesin the single-cell RNA-seq
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dataset, 225 genes in the LPS dataset, 128 genes in the Alzheimer’s
mouse model dataset, 240 genes in the global demyelination through
the EAE dataset, 236 genesinthelocalized demyelinationinjury data-
set). Finally, for each cell type, we applied the corresponding spatial
ageing clock to generate predicted ages from the smoothed spatial
geneexpression values. For single-nuclei RNA-seq datasets, which lack
spatialinformation, we used the pseudobulk approach from a previous
model* with 20 cells contributing to each pseudocell instead of Spa-
tialSmooth.

For all evaluations, we also quantified the magnitude of difference
inmedian predicted age (in units of months) and the 95% confidence
interval for this difference, which was computed from the empiri-
cal distribution of differences in median predicted ages using 1,000
bootstrap samples of individual mice within each condition. These
statistics are reported in Supplementary Table 12. In some cases,
imputation resulted in biased age predictions, but the differences
in predicted age across ages and conditions were generally robust.
In applying spatial ageing clocks with imputation, we recommend
comparing the predicted age to known ages in the dataset to cali-
brate interpretations. Generally, we observed lower spatial ageing
clock performance for cell types with low transcriptomic changes
with age such as neurons (see Fig. 1e) or those with limited marker
genes in external datasets such as neuroblasts (see Fig. 2d). Results
were also generally consistent for all applications of the spatial age-
ing clocks without SpaGE imputation and when using spatial ageing
clocks trained with the 220 genes (see Supplementary Table 7 for
list) with less than 5% estimated spillover based on aninternal Vizgen
metric using gene expression variations influenced by local cellular
composition (Supplementary Table 12).

Age acceleration calculation

We computed age acceleration for the predicted age of each cell to
measure the deviation from its expected predicted age (that is, the
average of predicted age across all cells from a given cell type and
mouse). For eachsample k€], ...,K} and cell type p € {1, ..., P}, we
define the set of cells belonging to both sample k and cell type pasQ,
and the age acceleration for each celli € Qis defined as:

(Age acceleration), = (Predicted age); - £ {(Predicted age);|j € Q}

Single-nuclei RNA-seq ageing data processing

We applied our spatial ageing clocks to publicly available single-nuclei
RNA-seq data on the CTX and STR of juvenile (0.93 months) and old
(20.93 months) female C57BL/6 ] mice"”. We downloaded processed
data objects containing the scaled log-normalized gene expression
from https://cellxgene.cziscience.com/collections/31937775-0602-
4e52-a799-b6acdd2bac2e and mapped several cell types to our cell-type
classifications. We modified the preprocessing and imputation steps
outlined in ‘Application of spatial ageing clocks on external datasets’
to account for the scaled log-normalized expression being used as
input. Predicted ages were highly consistent when using a scaled
log-normalized coronal section dataset for imputation.

Single-cell RNA-seq ageing data processing

We applied our spatial ageing clocks to publicly available single-cell
RNA-seq data on whole-brain tissue (without hindbrain regions) of
young (2-3 months) and old (21-22 months) male C57BL/6 ] mice’. We
downloaded processed datasets from https://portals.broadinstitute.
org/single_cell/study/aging-mouse-brain and mapped several cell
typesto our cell-type classifications.

140-gene MERFISH ageing data processing

We applied our spatial ageing clocks to our previously published
140-gene MERFISH spatial transcriptomics data on whole-brain coro-
nal sections of young (0.93 months), middle-aged (5.58 months) and

old (20.93 months) male C57BL/6 JN mice?’. We mapped several cell
typesto our cell-type classifications.

MERFISH ageing and LPS data processing

We applied our spatial ageing clocks to publicly available MER-
FISH spatial transcriptomics data on the CTX and STR of female
C57BL/6] mice in juvenile (0.93 months), young (5.58 months), old
(20.93 months), and lipopolysaccharide (LPS)-injected conditions".
We downloaded processed data objects containing the scaled
log-normalized gene expression from https://cellxgene.cziscience.
com/collections/31937775-0602-4e52-a799-b6acdd2bac2e and
mapped several cell types to our cell-type classifications and used exist-
ingregionannotations. We modified the preprocessing steps outlined
in‘Application of spatial ageing clocks on external datasets’ to account
for the scaled log-normalized expression being used asinput. Predicted
ageswere highly consistent when using a scaled log-normalized coronal
section dataset for imputation. We included all control (ageing) and
LPS-injected mice in our analyses.

STARmap Alzheimer’s disease data processing

We applied our spatial ageing clocks to publicly available STARmap
PLUS spatial transcriptomics dataon the CTX and hippocampus of male
TauPS2APP (Alzheimer’s disease model) and non-transgenic control
mice across two ages (8 and 13 months)*. We downloaded processed
data from https://singlecell.broadinstitute.org/single_cell/study/
SCP1375 and mapped several cell types to our cell-type classifications
and used existing region annotations. We included all control and Alz-
heimer’s disease mice in our analyses. The percentage of zero counts
was higher in this dataset (94%) than in the coronal section dataset
used for training the spatial ageing clocks (70%).

Insitu sequencing global demyelination data processing

We applied our spatial ageing clocks to publicly available in situ
sequencing spatial transcriptomics data on whole-brain coronal sec-
tions of male and female C57BL/6) mice (2.5 months) across global
demyelination and control conditions?. Global demyelination models
consisted ofinduction of EAE viainjection of myelin oligodendrocyte
glycoprotein. We downloaded processed data from https://zenodo.
org/records/8037425 and selected only whole-brain coronal sections.
We mapped several cell types to our cell-type classifications and used
existing region annotations. The percentage of zero counts in this
dataset (76%) was similar to that in the coronal section dataset used
for training the spatial ageing clocks (70%).

MERFISH localized demyelination injury data processing

We applied our spatial ageing clocks to publicly available MERFISH
spatial transcriptomics data of three whole-brain coronal sections at
different depths collected from young (3-4 months) male C57BL/6)
mice that were subjected to demyelination injury via stereotactic
injection of lysophosphatidylcholine at coordinates (from bregma):
(X, 1.0 mm; ¥,-0.1 mm)*. We downloaded processed data and meta-
datafrom Gene Expression Omnibus (GSE202638) and mapped several
celltypestoour cell-type classifications. Due to the spatially localized
nature of the demyelinationinjury and the lack of control conditionsin
this dataset, we analysed the predicted ages of cells in this dataset by
spatially visualizing all cells by their positive age acceleration (negative
values floored at zero) across each of the coronal sections to determine
spatial patterns in age acceleration with respect to the site of injury
for all cell types and for different major cell types. The percentage of
zero counts was higher inthis dataset (94%) thanin the coronal section
dataset used for training the spatial ageing clocks (70%).

Effect ofinterventions on predicted age
For a given cell type and experiment, to quantify the difference in
predicted ages between two experimental conditions, we computed



the difference in median predicted ages between cells of the two
conditions. Specifically for interventions, we subtracted the median
predicted age of cells belonging to mice in the control condition (sed-
entary, control) from the median predicted age of cells belonging to
miceintheintervention condition (exercise, OSKM, LPS or Alzheimer’s
disease). Positive values indicate that the intervention has an acceler-
ated ageing effect and negative values indicate that the intervention
has arejuvenating effect on the cells of the mice. For the whole-body
partial reprogramming experiment, since there was a differencein the
mean age of mice in the control and OSKM conditions of 0.3 months,
we corrected for this difference by adding anintercept to the predicted
ages before computing the effect. We computed this effect at the global
levels (all cells of a cell type) and at the regional level (all cells of a cell
type withinadefined anatomicregion). For the adverse interventions
datasets (LPS and Alzheimer’s disease), we used the existing anatomic
region annotations and mapped them to the closest region label in
our study. For all global comparisons, we quantified the difference
in median predicted age (in units of months) and the 95% confidence
interval for this difference, which was computed from the empirical
distribution of differencesin median predicted ages using 1,000 boot-
strap samples of individual mice within each condition. These statistics
arereported in Supplementary Table 12.

Spatial visualizations of the effect of interventions on predicted
ageinvolved computing an effect value for each cellin asample in the
intervention condition. Specifically, for each cell in the intervention
condition, we subtracted the median predicted age of cells belonging
tomiceinthe age-matched control condition (sedentary, control) from
the predicted age of that cell, and then visualized that cell by its spatial
coordinates and coloured by the computed value.

Cell proximity effects of ageing and rejuvenation

The cell proximity effect measures the effect that an effector cell
type hasonthetranscriptomic ageing of atarget cell type by compar-
ing target cells near effector cells to those that are far from effector
cells. To compute the distribution of nearest neighbour distances,
we constructed a triangulation mesh graph connecting neighbour-
ing cells on a given sample using squidpy.gr.spatial_neighbors with
delaunay=True'®®. We used the centroid of each cell to compute
distances between cells. We computed subregion-specific dis-
tance cutoffs for calling nearby cells as the average of the median
neighbour-neighbour distances measured across all samples. The
distance cutoffs (in micrometres) for the ageing (coronal) study were:
CC/ACO:24.89, CTX_L1/MEN: 25.91, CTX_L2/3:24.05,CTX_L4/5/6:27.24,
STR_CP/ACB:21.65,STR_LS/NDB:20.36, VEN:17.86. The distance cutoffs
(inmicrometres) for the exercise study were: CC/ACO: 23.58, CTX_L1/
MEN: 22.13, CTX_L2/3:21.80, CTX_L4/5/6:24.81, STR_CP/ACB: 20.75,
STR_LS/NDB: 19.82, VEN: 16.23. Using these subregion-specific dis-
tance cutoffs, weidentified target cells near effector cells (‘near’) and
matched them to target cells far from any effector cells (‘far’) for agiven
target cell type and effector cell type. First, we computed for each cell,
the shortest Euclidean distance to any effector cellin the same sample
for each effector cell type. Then, for each sample and combination of
target cell type and effector cell type, we labelled all target cells with
shortest Euclidean distance to effector cell type that was less than
the corresponding distance cutoff as ‘near’ and match them with ‘far’
target cellsinthe same subregion and sample that were furthest away
from the effector cell type with shortest distance greater than the
cutoff for ‘near’ cells. After obtaining matched sets of ‘near” and ‘far’
target cells across all samples, we combined them into a single set to
estimate the proximity effect of the effector cell type on the target
cell type. The proximity effect was computed as Cohen’s d measure
of effect size between the age acceleration of the ‘near’ target cells
compared with the age acceleration of the ‘far’ target cells. The vari-
anceinage acceleration was similar between ‘near’ and ‘far’ target cell
groups (Extended Data Fig. 9a). We filtered out comparisons with less

than 50 ‘near’ cells or less than 50 ‘far’ cells. Positive proximity effect
values indicate a pro-ageing effect exerted by the effector cell type
onthetarget cell type and negative proximity effect values indicate a
pro-rejuvenating effect exerted by the effector cell type on the target
cell type. We also computed the normalized frequency of proximity
interactions as the number of ‘near’ target cells divided by the total
number of target cells in the study and the statistics and P value from
the associated two-sided Student’s ¢-test between the age acceleration
of the ‘near’ and ‘far’ target cells.

Weimplemented several variations to the standard proximity effect
analysis. For region-specific proximity effects, we restricted the prox-
imity effect analysis to only cells within each of the anatomic regions.
For cell proximity effects using alternative definitions of ‘far’ cells,
we used two orthogonal approaches. The first approach consisted
of random sampling of ‘far’ cells from all target cells with shortest
distance greater than the cutoff for ‘near’ cells in the same subregion
and sample. The second approach consisted of selecting the set of
‘far’ cells with total raw transcript counts closest to the mean total
raw transcript count of the ‘near’ cells in the same subregion and
sample. For cell proximity effects based on predicted ages obtained
from non-spatial ageing clocks such as spatial ageing clocks that
did not use the SpatialSmooth step for prediction (SingleCell (SS))
or single-cell ageing clocks using cell-type-specific pseudobulking
of gene expression (1,000 bootstrap samples of 30 cells following
prescribed procedures*) during training and prediction (SingleCell
(PB)), we used predicted ages from these aforementioned clocks in
lieu of predicted ages from the spatial ageing clocks and performed
cell proximity analysis following the original setup. For the ‘spillover
filtered’ cell proximity effects, we used predicted ages from the spatial
ageing clocks trained on the 220 genes with less than 5% estimated
spillover based on an internal Vizgen metric using gene expression
variationsinfluenced by local cellular composition. For cell proximity
effects on datasets other than the coronal section dataset, we com-
puted dataset-specific distance cutoffs for subregions and regions
and computed proximity effects using the original setup for all cell
types that were mapped to our cell-type classifications. We calculated
separate proximity effects for cells across the entire external dataset
and for cells restricted to the control conditions. To assess the effect
of interventions on cell proximity effects, we computed cell proximity
effects separately for each experimental condition. We excluded the
140-gene MERFISH dataset from proximity effect analysis because this
dataset was spatially sparse with distance cutoffs that were several
times greater than that of other datasets, probably owing to lower cell
detection/segmentation frequency.

The average proximity effect for each effector cell type was computed
as the average proximity effect across all target cell types after filter-
ing. To assess the most impacted target cell types, the mean absolute
proximity effect for each target cell type was computed by averaging
the absolute value of the proximity effect across all effector cell types
after filtering.

Spatial permutation analysis

Spatial permutations canbe used to assess frequency of cell-cellinter-
actions occurring by chance due to regional differences in cell-type
proportion'®. We performed subregional spatial permutations of cells
as a negative control for the spatial proximity effects measured for
effector cells.Ineach permutation, for each sample in the ageing (coro-
nal) study, we randomly permuted the spatial coordinates of each cell
using numpy.random.permutation. This permutation was performed
separately for each subregion to maintainregional heterogeneity. Then,
we measured proximity effects onthe permuted dataset. We repeated
these permutations twenty times using random seeds drawn uniformly
from 0t050,000 with agenerating random seed of 444. We computed
the median and 95% confidence interval for the proximity effect of each
effector cell type across these twenty permutations.
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Spatial visualization of age acceleration near effector cells

We generated visualizations of cells coloured by their age accelera-
tion around key effector cell types (for example, T cells and NSCs) by
selecting an effector cell, drawing a square bounding box centred on
the effector cell with edge lengths of 200 pm, and then visualizing all
cellswith centre coordinates inside of the bounding box. We manually
selected visualizations from a middle-aged (18.8 months) mouse for
T cells and NSCs.

Impact of potential spillover transcripts on proximity effect

We verified that the cell proximity effects were unlikely to be con-
founded by spillover of transcripts between nearby effector and
target cells arising from segmentation errors, which can be particu-
larly prominent for cells near NSCs in the densely packed VEN region
(Supplementary Fig. 7a). In afirst approach to test this, we computed
proximity effects based on predicted ages obtained from spatial ageing
clocks trained on a subset of genes after filtering out genes with high
estimated spillover rate (see Methods) (Supplementary Fig. 7b).In a
second approach to test this, we performed area-restricted proximity
effect analysis, which excluded cells within a small radius of the effec-
tor cells (see ‘Area-restricted cell proximity effects’), for spatial ageing
clocks and two non-spatial ageing clocks (Supplementary Fig. 8a,b).
We verified that this area-restricted approach drastically attenuated
transcript spillover effectsin all target cell types near T cells and NSCs
(Supplementary Fig. 8c). Both approaches corroborate that T cells
have the most pro-ageing proximity effect and NSCs have the most
pro-rejuvenating proximity effect (Supplementary Figs. 7b and 8b).

Area-restricted cell proximity effects

To remove the potential influence of transcript spillover from cell
segmentations on the cell proximity effect analysis, we developed an
alternative approach to compute area-restricted cell proximity effects,
where ‘near’ cells are labelled using two cutoff distances instead of
the single cutoff distance in the standard proximity effect analysis
(see Supplementary Fig. 8a). We set the larger of the two cutoff dis-
tances equal to double the subregion-specific distance cutoff from
‘Cell proximity effects of ageing and rejuvenation’. We set the smaller
cutoff distance to be 15 um less than the larger cutoff distance. We
label target cells with shortest Euclidean distance to effector cell type
thatis greater thanthe smaller distance cutoffbut less than the larger
distance cutoff as ‘near’ and match them with ‘far’ target cells in the
same region and sample that are farthest away from the effector cell
type with shortestdistance greater than the larger distance cutoff for
‘near’ cells. Then, area-restricted cell proximity effects are calculated
using the same approach as described in ‘Cell proximity effects of
ageing and rejuvenation’ except with these modified ‘near’ and ‘far’
celllabels.

Spatial gradation of cell proximity effects

We computed cell proximity effects as a function of the unit distance
betweenthe effector and target cells, where the unit distance is defined
as ascalar value that is multiplied by the subregion-specific distance
cutoffs from ‘Cell proximity effects of ageing and rejuvenation’. These
unit distances are used as new cutoff distances to compute cell prox-
imity effects. We also analysed spatial gradation of area-restricted cell
proximity effects by setting the larger of the two cutoff distances to
the unit distance and the smaller cutoff distance to be 15 um less than
the larger cutoff distance, which ensured no overlap of cells defined
as ‘near’ between integer multiples of the cutoff distances.

Activation/inflammation glia signatures and subtype
identification

We computed microglia activation scores and oligodendrocyte/OPC
inflammation scores by summing the log-normalized expression of

all shared genes between gene signature sets curated from several
published sets°!%” and the 300 genes in the MERFISH dataset. The
microglia activation score consisted of gene expression from Apoe,
B2m, Clga, Cd69, Cd9,Il1a, Il1b,1l6 and Lyz2. The oligodendrocyte/OPC
inflammation score consisted of gene expression from C4b, Cdknla,
H2-D1, Ifit1 and StatI.

To control for activation/inflammation statusin the T cell proximity
effect, we selected the cutoff for classifying microglia (activated) and
oligodendrocyte (inflamed) subtypes as the top 0.2% highest scores
since that was the highest percentage cutoff for which there was no
statistically significant difference in the distribution of activation/
inflammation scores between activated/inflamed cells that were near or
farfromT cells. We performed all associated proximity effect analysis
using the normal and activated/inflamed subtype labels for microglia
and oligodendrocytes.

Cell-type perturbation modelling with deep learning

Deep learning approaches such as GNNs can be leveraged to predict
the effects of in silico perturbations. For each section in the coronal
section dataset, we constructed aglobal graph connecting neighbour-
ing cells on a given sample using squidpy.gr.spatial_neighbors with
delaunay=True'®and pruned edges connecting neighbouring cells with
distance greater than 200 um. To define local cellgraphs, we extracted
induced 2-hop subgraphs of the global graph by random sampling of
atmost 100 centre cells per cell type for T cells and NSCs. To increase
the heterogeneity of these local cell graphs, we further augmented
these local cell graphs by inducing two-hop subgraphs centred on all
cellswithinthe first set of local subgraphs. For eachlocal cell graph, we
defined the neighbourhood ageing as the average age acceleration of
all cellsin the graph. We defined cell (node) features as a one-hot vec-
tor for cell type using the 18 cell-type annotations. We trained a GNN
model using PyTorch Geometric'® to predict neighbourhood ageing
from the features of a local cell graph. The GNN model consisted of a
three-layer graphisomorphism network (GIN), withnode embedding
updates for each layer modelled by alinear transformation with hidden
dimensionality of 16 followed by batch normalization, ReLU transfor-
mation, and a final linear transformation with hidden dimensionality
of16. Thefirst two GIN layers were followed by aReLU transformation
and the output of the final GIN layer was globally pooled by addition
before linearly transformed to predict neighbourhood ageing. We
trained the GNN model using a balanced mean-squared error loss'®,
the Adam optimizer® with a learning rate of 0.0001, and a batch size
of 64 for 50 epochs.

To model ‘loss-of-function’ perturbations for a given local cell
graph, we mutated the centre cell of the graphinto arandom cell type
drawn from auniformdistribution across all cell typesin the dataset
excluding the original cell type. We performed ‘loss-of-function’
perturbations for local cell graphs that had T cells and NSCs as centre
cells. To model ‘gain-of-function’ perturbations for agiven local cell
graph, wereplaced the centre cell of the graph with the specified cell
type by modifying its node features. We performed ‘gain-of-function’
perturbations for all local cell graphs and mutated the centre cells to
either T cells or NSCs. We excluded ‘gain-of-function’ perturbations
resultinginunperturbed local cell graphs from our analysis (for exam-
ple, graph with T cell as centre cell replaced by T cell). For both ‘loss
of function’ and ‘gain-of-function” experiments, we used endothelial
cells asanegative control setting. Using the GNN model, we evaluated
the effect of both ‘loss-of-function’ and ‘gain-of-function’ perturba-
tions by predicting the neighbourhood ageing for the unperturbed
local cell graph and the neighbourhood ageing for the perturbed
local cell graph. The effect on neighbourhood ageing was then
measured as the unperturbed neighbourhood ageing subtracted
from the perturbed neighbourhood ageing (positive values indi-
cating a pro-ageing perturbation and negative values indicating a
pro-rejuvenating perturbation).



TISSUE imputation
To augment the 300 genes measured through MERFISH to more than
12,000 genes, we performed uncertainty-aware spatial gene expres-
sion imputation, using amethod we recently developed, TISSUE?, as
awrapper around the SpaGE™** and Tangram™ imputation algorithms.
TISSUEis analgorithm that provides an uncertainty-aware framework
for performing differential gene expression and signature analysis on
imputed spatial gene expression with marked reductionsin false discov-
eryrates compared with otherapproaches®. Thisimputationapproach
consists of jointly mapping transcriptomes from our MERFISH study
with single-cell RNA-seq datasets collected from mice across multiple
ages and containing the brain regions of interest (for example, VEN,
CCor STR)**, followed by prediction of new gene expression profiles
using the single-cell RNA-seq dataset as reference and differential analy-
sis of gene expression and gene signatures (Extended Data Fig. 12a).
The log-normalized gene expression data from the first dissociated
single-cell RNA-seq dataset® were used for imputation of gene expres-
sionfor T cells (8,170 genesimputed in total), and log-normalized gene
expressiondatafrom the second dissociated single-cell RNA-seq data-
set* were used forimputation of gene expression for all other cell types
(12,719 genesimputed in total). We applied the TISSUE algorithmona
subset of the coronal section dataset (see below for details). We used
the raw MERFISH counts normalized by cell segmentation volume
as input for imputation. We used TISSUE with the SpaGE imputation
algorithm'®* and Tangram imputation algorithm™, under default set-
tings such as 10 folds of cross-validation, 4 stratified gene groups,
1stratified cell group, and 100 multiple imputations (for hypothesis
testing purposes). Evaluation of TISSUE calibration quality and SpaGE/
Tangram imputation performance were conducted using the TISSUE
software package and associated code®. Using cross-validation, we
verified that the imputed gene expression values were positively cor-
related with the actual gene expression values and generally had small
absolute prediction errors (Extended Data Fig. 12b).

We filtered cells in the coronal section dataset to include NSCs and
T cells, and all target cells labelled ‘near’ or ‘far’ with respect to NSCs
or T cells under the proximity effect framework. We re-centred each
sample to grid lattice points such that no samples spatially overlap.
In addition to ‘near’ and ‘far’ labels, we also labelled each T cell and
NSC by the strength of their proximity effects. First, we computed the
neighbourhood age acceleration asthe average age acceleration of all
cells within the maximum subregion distance cutoff for each T cell or
NSC.Then, welabelled all T cells with the 50% highest neighbourhood
age acceleration as ‘more pro-ageing’ and the remaining T cells as ‘less
pro-ageing’, and we labelled all NSCs with the 50% lowest neighbour-
hood age acceleration as ‘more pro-rejuvenating’ and the remaining
NSCs as ‘less pro-rejuvenating’.

TISSUE differential gene expression analysis and pathway
enrichment

To uncover potential mediators of T cell and NSC proximity effects,
we used a two-step approach. First, we performed unbiased differ-
ential gene expression analysis using TISSUE? on more than 12,000
imputed genes, with the goal of identifying common genes that were
upregulated in cells near key effector cell types (T cells or NSCs) com-
pared with cells far from the same effector cell type and matched by
celltype and subregion (that s, the same procedure as for calculating
proximity effects). We verified that cells near T cells or NSCs did not
include a cell type that was substantially more represented than all
other celltypes and that all 14 cell types with spatial ageing clocks were
present (Supplementary Table 16), and we checked that the variances
inimputed gene expression were similar between the comparison
groups (Extended Data Fig. 12¢). In the second step, to better under-
stand potential mechanisms of action, we performed targeted statis-
tical comparisons of imputed gene signatures using TISSUE and gene

expressionin the MERFISH datasets for processes related to the most
enriched terms from the unbiased analyses in both effector cell types
(T cells or NSCs) and target cells (nearby cells).

We used TISSUE to perform uncertainty-aware differential gene
expression analysis on theimputed gene expression. TISSUE relieson a
multipleimputation framework with statistical guarantees that are only
extensible to t-tests (non-parametric TISSUE tests rely on aless rigor-
ously defined Pvalue transformation)®. Given the variability inimputa-
tion quality, we chose the TISSUE framework, which was well-suited for
this task despite some limitations of the ¢t-test. We performed two sets
of comparisons using TISSUE two-sided ¢-test for hypothesis testing
of gene signatures. First, we compared gene signature scores between
‘near’ and ‘far’ target cells with respect to either T cells or NSCs. Sec-
ond, we compared gene signature scores between more pro-ageing
andless pro-ageing T cells or between more pro-rejuvenating and less
pro-rejuvenating NSCs. We determined significant DEGs as genes with
permissive cutoff of P < 0.05 from TISSUE two-sample ¢-tests for both
SpaGE and Tangram imputed expression to reduce false discoveries
resulting from variability or biases in imputation quality. We further
filtered these genes such that the associated TISSUE ¢-statistic were
ofthe same sign across the tests on SpaGE and Tangram imputations.
We did not perform any filtering of genes by the log fold change in
imputed gene expression across conditions because unlike the TISSUE
Pvalue, thelog fold change is not calibrated for uncertainty in spatial
gene imputation.

GO biological process (2023) gene set enrichment was performed
using the EnrichR framework'? accessed through gseapy™ (version
1.0.4). We separated DEGs for each comparisoninto upregulated DEGs
(positive TISSUE ¢-statistic) and downregulated DEGs (negative TISSUE
t-statistic) and used these gene lists as inputs into EnrichR to obtain
enrichment statistics for different gene sets. We selected the top five
gene sets for each comparison, which were generally representative
of all significantly enriched gene sets.

Test for equal variances between groups

We performed Levene’s test for equal variances using the scipy.stats.
levene implementation with default settings (center = median, propor-
tiontocut = 0.05) for analyses relying on Cohen’s d or variations of the
Student’s t-test. Levene’s test was applied to test for equal variance of
ageacceleration of ‘near’ and ‘far’ cell groupings for each cell proximity
effect. Levene’s test was also applied to test for equal variance of TIS-
SUE (SpaGE) imputed gene expression of ‘near’and ‘far’ cell groupings
withrespectto T cellsand NSCs. Inboth cases, the number of samples
between the compared groups was equal, asetting inwhich Cohen’sd
and Student’s t-test are usually robust against unequal variances across
groups.

TISSUE gene signature scores

We further modified the hypothesis testing framework in TISSUE
to perform testing for gene signature scores (sum of imputed gene
expression values across all genes in a GO gene set). We have made
this modification publicly available in the TISSUE package? as tissue.
downstream.multiple_imputation_gene_signature and we set n_impu-
tations=100 for all gene signature tests. For imputed gene signature
scores, we performed the same two sets of comparisons as outlined in
‘TISSUE differential gene expression analysis and pathway enrichment’.
For similar comparisonsinvolving expression of individual genes (for
example, Bst2, Statl, Cd9 and Vegfa) instead of gene signatures, we used
the measured (log-normalized) gene expression values in the MERFISH
dataset instead of imputed values.

Immunofluorescence staining of brain sections

All immunostainings were performed on male C57BL/6JN mice at
the indicated ages. Mice were sedated with 0.8 ml 2.5% vol/vol Aver-
tin (Sigma-Aldrich, T48402-25G) in PBS (Corning, 21-040-CV) and
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perfused via the left ventricle of the heart with 5 ml of PBS (Corning,
21-040-CV) with heparinsodiumsalt (50 U ml™, Sigma-Aldrich, H3149-
50KU) to remove circulating blood cells followed by 4% paraformal-
dehyde (Electron Microscopy Sciences, 15714) in PBS. Brains were
post-fixed overnight in 4% paraformaldehyde (Electron Microscopy
Sciences, 15714) and then dehydrated in 30% sucrose (Sigma-Aldrich,
$3929) for 72 h. Brains were embedded in OCT compound (Fisher
Healthcare Tissue Plus, 4585), sectioned in 20-pm coronal sections
usinga cryostat (Leica, CM3050S), and then mounted on electrostatic
glassslides (Fisher Scientific, 12-550-15). Coronal sections at a similar
depthto the MERFISH coronal sections were collected. For the follow-
ing steps, all brain sections were processed simultaneously within
each experiment. Forimmunofluorescence staining, brain sections
were washed with PBS for 5 min, permeabilized in ice-cold methanol
with 0.1% Triton X-100 (Fisher Scientific, BP151) for 15 min, and washed
3 times with PBS for 5 min. We performed antigen retrieval by plac-
ing the brain sections in 10 mM sodium citrate buffer (pH 6.0;2.94 g
Tri-sodium citrate dihydrate (Sigma-Aldrich, S1804) in1,000 mI milliQ
H,0 adjusted to pH 6.0 with1 N HCI) + 0.05% Tween-20 (Sigma-Aldrich,
P1379-1L) at 85 °Cin awater bath for 2 h. Brain sections in buffer were
cooled to room temperature for 20 min and then washed twice with
PBS for 3 min. Sections were blocked for 30 min at room tempera-
ture with block buffer consisting of 5% normal donkey serum (Immu-
noReagents, SP-072-VX10) and 1% BSA (Sigma, A7979) in PBS. Primary
antibodies were diluted in blocking buffer and primary antibody stain-
ing was performed overnight at 4 °C. Primary antibodies used were
as follows: anti-GFAP (1:1,000 dilution, Abcam, ab53554), anti-Ki67
(1:500 dilution, Thermo Fisher Scientific, 14-5698-82), anti-DCX
(1:500 dilution, Millipore Sigma, AB2253), anti-EGFR (1:200 dilution,
Millipore Sigma, 06-847), anti-STAT1 (1:500 dilution, Cell Signaling
Technology, 14994), anti-CD3 (1:500, Abcam, ab11089), anti-S100A6
(1:500, Abcam, ab181975), anti-CD9 (1:100, Thermo Fisher, eBioKMC8
(KMC8)), anti-CPT1A (1:200, Abcam, ab128568). Sections were washed
3 times with PBS and 0.2% Tween-20 for 10 min at room temperature
followed by twice with PBS for 15 min. Secondary antibodies were
diluted in blocking buffer and secondary antibody staining was per-
formedfor2 hatroomtemperature. Secondary antibodies used were
as follows: Donkey anti-Goat 647 (1:500 dilution, Invitrogen, A21447),
Donkey anti-Rabbit 488 (1:500 dilution, Invitrogen, A-21206), Donkey
anti-Guinea pig 594 (1:500 dilution, Jackson ImmunoResearch, 706-
585-148), Donkey anti-Rat 647 (1:500 dilution, Invitrogen, A48272),
Donkey anti-Rat 488 (1:500, Invitrogen, A21208), Donkey anti-Mouse
647 (1:500, Invitrogen, A31571), Donkey anti-Rabbit 568 (1:500, Invit-
rogen, A10042). DAPI (1:500, Thermo Fisher, 62248) was added during
secondary antibody staining. Sections were washed 3 times with PBS
and 0.2% Tween-20 for 10 min followed by 3 times with PBS for 5 min.
Sections were mounted with ProLong Gold Antifade Mountant with
DAPI (Thermo Fisher, P36931) and a coverslip.
Forimmunofluorescence experiments corresponding to spatiotem-
poral marker expression, images were acquired on a Zeiss LSM 900 with
Zeiss ZEN Blue 3.0 software or a Zeiss LSM 980 confocal microscope
with Zeiss ZEN Blue 3.3 software using a 10x objective and automatic
tiling of entire coronal brain sections. The same equipment and micro-
scope acquisition settings were used for different brain sections with
the same antibody panel. Tile images were stitched using Zeiss ZEN
Blue software. Image brightness and contrast were adjusted in Image)
(1.53n) to enhance visualization with the same settings applied to all
images shown for each antibody staining panel.
Forimmunofluorescence experiments correspondingto T celland
NSC proximity effects, images were acquired with a 60x objective on
aNikon Eclipse Ti confocal microscope equipped with a ZylasCMOS
camera (Andor) and NIS-Elements software (AR 4.30.02, 64-bit). For
immunofluorescence experiment corresponding to T cell proxim-
ity effects, we acquired at least two images containing T cells and
at least one image without any T cells from each of four anatomic

regions (CC, CTX, striatum and adjacent regions (STR) and VEN) for
each brain section. The same image acquisition settings were used
for all brain sections in this experiment. For immunofluorescence
experiment corresponding to NSC proximity effects, we acquired
individual images tiling the entire right and left VEN for each brain
section. The same image acquisition settings were used for all brain
sections in this experiment.

Immunofluorescence quantification of T cell proximity effect
viainterferonresponse

Immunofluorescence imaging was performed on brain sections from
old (28 months) mice. All cell segmentations and cell-type annota-
tions were performed using automated pipelines in QuPath 0.5.1. For
all images, cell nuclei were automatically segmented based on DAPI
intensity, and then nuclear segmentation masks were expanded by
2 umtodefine the cell segmentations. Cells were labelled as CD3" using
amanually determined threshold for mean cell CD3 intensity. The same
threshold was used across allimages and CD3" cells were annotated as
T cells. For all CD3 cells, we defined cells as ‘near’ if they were located
within 50 pm of a T cell based on the centroids of cell segmentations
and otherwise defined them as ‘not near’. For each anatomic region
(CC, CTX, STR and VEN) and each cell proximity definition (‘near’ or
‘not near’), we quantified the mean STAT1 intensity by averaging the
mean cell STAT1 intensity across each section and then by averaging
these values across each mouse (3-5 coronal sections per mouse,
8 mice per condition). We were unable to discover any T cellsinthe STR
region for one of the eight mice due to low CD3 intensity in its brain
sections. The mean STAT1 intensity values were normalized for each
independent experiment by dividing themby the corresponding mean
‘not near’ STAT1 intensity.

Immunofluorescence quantification of NSC proximity effect via
exosomes and fatty acid oxidation pathway

Immunofluorescence imaging was performed on brain sections from
young (3.5months) mice. All cell segmentations and cell-type annota-
tions were performed using automated pipelines in QuPath 0.5.1. For
allimages, regions of interest were defined along the lining of the VEN.
Within these regions of interest, cell nuclei were segmented based on
DAPlintensity, and then nuclear segmentation masks were expanded
by 2 pmto define the cell segmentations. Cells were labelled as SI00A6*
using amanually determined threshold for mean nuclear SI00A6 inten-
sity. The same threshold was used across allimages and SI00A6* cells
were annotated as NSCs and other cells were annotated as non-NSCs.
To compare CD9 intensity between SI00A6" and SI00A6™ cells, we
quantified the mean CD9 intensity by averaging the mean cell CD9
intensity across each section and then by averaging these values
across each mouse (three coronal sections per mouse, five mice per
condition). The mean CD9 intensity values were normalized for each
independent experiment by dividing them by the CD9 intensity in
S100A6  cells. For all cells, we defined cells as ‘near’ if they were located
within 20 pm of a NSC (excluding itself) based on the centroids of cell
segmentations and otherwise defined them as ‘not near’. To compare
CPTIA intensity between ‘near’ and ‘not near’ cells, we quantified the
mean CPTI1A intensity by averaging the mean cell CPT1A intensity
across each section and then by averaging these values across each
mouse (three coronal sections per mouse, five mice per condition).
The mean CPT1A intensity values were normalized for each inde-
pendent experiment by dividing them by the corresponding mean
‘notnear’ CPT1A intensity. To examine the correlation between CPT1A
intensity of all ‘near’ cells and the CD9 intensity of the nearest NSC,
we matched all ‘near’ cells to their nearest NSC defined by the mini-
mum non-zero Euclidean distance between centroids and computed
the Pearson and Spearman correlation between the paired CPT1A
and CD9 intensities. To check the robustness of the correlation
analysis to technical variability, we also re-imaged all sections using



a Zeiss LSM 900 with Zeiss ZEN Blue 3.0 software and performed the
sameimage analysis. Results were highly consistent with the reported
findings.

Statistics and reproducibility

For measures of Pearson and Spearman correlation and their associ-
ated test statistics (Pvalues and 95% confidence intervals), we used the
implementation from scipy.stats.pearsonr and scipy.stats.spearmanr.
For most comparisons, we used the two-sided Mann-Whitney tests
according to the implementation from scipy.stats.mannwhitneyu.
We used Cohen’s d for cell proximity effect analysis in which similar
variances in age acceleration were typically observed between ‘near’
and ‘far’ cell groups (Extended Data Fig. 9a). GO biological process
enrichment analysis was performed with topGO' (R package version
2.54.0) using Fisher’s exact test for all Biological Process terms and
using all other genes measured by MERFISH as background. For other
dataanalysis and plotting tasks, we used Python (3.8.13), pandas (1.4.2),
matplotlib (3.5.1), seaborn (0.12.2), numpy (1.21.6), scipy (1.8.0), sklearn
(1.0.2), anndata (0.8.0), scanpy (1.9.1), squidpy (1.1.2), tissue-sc (0.0.2),
tangram-sc (1.0.3), spage (accessed September 1,2022), gseapy (1.0.4),
umap-learn (0.5.3) and statsmodels (0.13.2).

Forthe gene signature and differential gene expression analysis with
imputed spatial gene expression, we used the two-sample two-sided
TISSUE ¢-test with specifications outlined in the ‘TISSUE imputation’
section. The TISSUE ¢-test is the only statistical test that considers
uncertainty inimputed gene expression and to further decrease false
discoveries, we selected genes with consistent differential expres-
sion across two imputation methods (SpaGE™®* and Tangram™). For
most comparisons using the TISSUE ¢-test, variances inimputed gene
expression were similar across groups (Extended Data Fig. 12¢). We
did not perform multiple hypothesis correction of P values for the
targeted gene signature analysis using TISSUE imputation because
gene signatures were manually selected. Reported P values are from
the SpaGEimputed gene expression. For pathway enrichment for DEGs
identified with TISSUE and imputed gene expression, we used gseapy.
enrichr with the ‘GO _Biological_Process_2023’ gene set, ‘mouse’ as the
organism, and all imputed genes as background.

Technical reproducibility of MERFISH measurements was confirmed
by profiling consecutive sections in the 140-gene MERFISH dataset®
(Extended Data Fig. 1a). For the MERFISH (300 gene) ageing dataset,
we combined two cohorts (n =10 mice for each cohort) and confirmed
reproducibility of spatial ageing clock performance and generalization
ofkey findings withineach cohort (Extended Data Fig. 5b,c and Supple-
mentary Fig. 6d,e). Allexperimental validation was performed oninde-
pendent mice. Technical reproducibility of immunofluorescence image
analysis for the NSC proximity effect mediation through exosomes
and fatty acid oxidation was assessed with re-imaging of the same sec-
tions by a different experimentalist with a different microscope. Two
separate immunofluorescence staining and imaging experiments for
T cell proximity effect mediated through interferon response were
performed and combined for analysis, with intensities normalized
against each experimentindependently.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The processed MERFISH spatial transcriptomics datasets generated
forthisstudy are available at https://doi.org/10.5281/zenodo.13883177
(ref. 114). The ageing and LPS injection dataset and the associated
single-nuclei RNA-seq dataset were accessed from https://cellxgene.
cziscience.com/collections/31937775-0602-4e52-a799-b6acdd2bac2e.
The single-cell RNA-seq ageing dataset of whole mouse brain was

accessed from https://portals.broadinstitute.org/single_cell/study/
aging-mouse-brain. The Alzheimer’s model dataset was accessed from
https://singlecell.broadinstitute.org/single_cell/study/SCP1375. The
multiple sclerosis model dataset with global demyelination via experi-
mental autoimmune encephalomyelitis was accessed from https://
zenodo.org/records/8037425. The localized demyelination injury
dataset was accessed from Gene Expression Omnibus under acces-
sion number GSE202638. The single-cell RNA-seq datasets for the
subventricular zone across lifespan were accessed from https://doi.
org/10.5281/zenodo.7145398. The GenAge database was accessed at
https://genomics.senescence.info/genes/models.html. Source data
are provided with this paper.

Code availability

All code used for data analysis and experiments is available at https://
github.com/sunericd/spatial_aging_clocks. The Python package for
deploying spatial ageing clocks to single-cell transcriptomics datasets
and performing cell proximity effect analysis for spatial transcriptom-
icsis available at https://github.com/sunericd/SpatialAgingClock.
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Extended DataFig.1|See next page for caption.
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Extended DataFig.1| MERFISH datareproducibility and external validation.
a, Reproducibility plot of individual genes by their counts per cell between two
adjacent coronalsectionsinthe 140-gene MERFISH dataset. Pearson correlation
between the gene counts per cell of the two sectionsisnoted in parentheses.

b, Q-Q (quantile-quantile) plot of all log-normalized expression values across
allcellsand genesinthe MERFISH data of the youngest mouse (3.4 months)
compared to the oldest mouse (34.5 months) in the coronal sections dataset
(left) and for four randomly selected pairs of mice from the coronal sections
dataset (right). c,d, Heatmaps showing the scaled log-normalized expression
ofkey cell type marker genes for different cell types (columns) and grouped by

theidentified cell type clusters (rows) for (c) the coronal sections of the aging
study and (d) the sagittal sections of the aging study. e, Scatter plot of cells by
their spatial coordinates across all coronal sections and ages with cells colored
by celltype.f, Scatter plot of cells by their spatial coordinates with cells colored
by cell type for representative coronal sections from our coronal section dataset
(leftmost) and each of three publicly available spatial transcriptomics datasets
of adult mouse brain (coronal brain sections). Regions are labeled for each
dataset: cortex (CTX), striatumand adjacent regions (STR), corpus callosum
(CC), lateral ventricle (VEN), and injury site (arrow).
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Extended DataFig.2|Validation of spatiotemporal gene expressionin the
MERFISH panel byimmunofluorescence staining.a, MERFISH coronal section
dataset: Scatter plot of cells by their spatial coordinates across all sections for
threeages (young 3.4 months, middle-aged 15.8 months, old 28.5 months) with
cellscolored by scaled log-normalized gene expression of key marker genes in
the MERFISH coronal section dataset for four genes (Statl, Mki67, Dcx, Egfr).
Statlisaninterferon-response gene.Mki67is a cell proliferation marker gene.
Dcxisaneuroblast marker gene. Egfrisaneural stem cellmarker gene. The whole
coronal sections are shown for Stat1. The areas around the lateral ventricles
areshown for Mki67, Dcx, and Egfr. Arrows indicate the subventricular zone

b Immunofluorescence Staining Validation

Young Middle-Aged Old
3-4 months 15-16 months 28-31 months
- : ;
sTaT1 8 L3 A ipiiE . st
(Inverted) * % L ,* i 2
Kie7 w
2l w N ¥
Kie7 1\ { T : ; ‘
1 | . w
(nverted) ¥ };‘ x g ~ }
w
o d 7 » ~ 3 i
DCX ) ® ! ) & N
(Inverted) a3 ¢ )v, .S 20l
AN
A
EGFR [Pl x Y >
A ‘ x
EGFR " . 4
(Inverted) % X e 5.

neurogenic nicheinthelateral ventricles. b, Immunofluorescence validation:
Immunofluorescence staining of perfused mouse brain sections from male mice
atthree ages (young 3-4 months, middle-aged 15-16 months, old 28-31 months)
for protein markers corresponding to each of the select MERFISH genes.

The whole coronal sectionis shown for STAT1. The area around the lateral
ventriclesis shown for Ki67, DCX, and EGFR. Arrows indicate the subventricular
zone neurogenicnicheinthelateral ventricles. Shown are the original
immunofluorescenceimages and theinverted grayscale images (to provide
amoredirect comparison with the MERFISH data).



Article

Reln Lamp5 Vip Sst Pvalb
a b c
S CTX_L1MEN * ’ ’ * ’——
SCTX_LUMEN 9
CTX_L213 5
CTX L4/5/6 2 cTx.23 <——> <= <“‘>
«STR.CPIACB 2 -
< STR_LS/NDB 3
+ CCIACO £
«VEN 8§ CTX_Lassie @ 4-> <_> _<>_
0.1 0.2 0.0 0.5 1.0 0.1 02 00 0.2 04 0.0 0.2 0.4
Log-Normalized Marker Expression
d Reln Vip Sst Pvalb
MERFISH
(This Study)
Allen Brain Atlas
e Oligodendrocyte f OPC g T cell h Microglia
% CTX CCI/IACO % CTX CCI/ACO % CTX CC/ACO j(_g CC/ACO
= =067 i d s " =058 0.05{% r=-069 B 000157r=035 ® | 00050{r= Q oqo =088
110.32,0.86] ° [-0.81,-0.19] [-0.87, -0.36] [ [-0.11,§.69] I i -101[0.71, 0.95]
E o ots 00, ° [y ® 8 L 005 °
k3 o o 5 G 00010 000254, 5} %
c c c < 0.05
S =049 @ S 5] 0.0005 o 0.0000 O 0044
= [:0.77, -0.06] gy = = . B »
3 3 8 g
s VEN s C STR VEN w STR
5 ik 5 = _ - _
_ p =048 c [r=057 3
N eei; 6912318] S & oo 0.024[0.05,0.76] S 00 pa7,081®
= e = = o D ° 0.02
g g g 0.0005 o Y
- o, Qo o ©
s % r=-0.67 0.37 Q 0.03 1
IS £ 10.86,-0.3g) ® 10.7,0.08] ] g 0.0000 O'DOM: g o9 0011
38 10 20 30 8 10 20 30 10 20 30 o 10 20 30 10 20 30 o 10 20 30 10 20 30
Age (Months) Age (Months) Age (Months) Age (Months)
| Cell Type Proportion Changes (Sagittal Sections)
Neuron-Excitatory Neuron-Inhibitory Neuron-MSN Astrocyte Microglia Oligodendrocyte OPC Endothelial Pericyte
= : =093 =003 =092 =058 =052 =038 =024
. 0300{ © 15908y o (099,081 o11] o [08.082 {43699 S| 0201{0.43 0.5 002500  {537°049] 008{ 091,062 g00] (088071
g oars 028 004 . 004 ° | o8] o  ©e | 00225] . o o
. . o 0018
£ ool e 0% 003 010 * 0.16 | 00200 007 \'. o
- 024 X J 003 L 0016
c 0225 o e 0.09 o 0.14 00175{ © 0.064® T e
S o 0.22 0.02 . . 4 - o o
] ' { 2
S . VSMC VLMC Ependymal Neuroblast Macrophage T cell B cell 0 0
= 0016r=722 0.030 =026 ® r=:056 J =064 0.0008—="0.17
c [0.73,0.88 . 0005{  [0.8807| o0  [-0.94,0.46) { 0.0061{-0.36, 0.9¢) [-0.85, 0.76]
S oot4 o - 0.001 0.0010{
‘3 0012 '-/' 0025 | 0004 0.005: \ 0.005: <l 0.0006{ °
Q Te ——9
g 0.010 . o *| oousfs——o° | oooof e e 0.000{ © o 0.004 / oo oooos| <
0020{ r=0. . - -
O 0008{ 4 © [0.77,085] 0.002 A 0005 0001 o003l ® .
0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20
Age (Months)
Sagittal Sections
6.6 mo 8.6 mo 19.8 mo 23.5mo
T cell ]
= A
19.8 mo
P . .
NSC A : g A . B 1

Extended DataFig. 3 |See next page for caption.



Extended DataFig. 3 |Subregionannotation and cell type composition
changes. a, Scatter plot of cells by their spatial coordinatesinanexample
coronalsection with cells colored by region. b, Scatter plot of cells by their
spatial coordinates in the example coronal section with cells colored by
subregion. ¢, Violin plots showing log-normalized gene expression of five
different cortical layer or neuronal subtype markersacrossall cells in different
subregions of the cortexin the coronal section dataset. The markersinclude:
Reln (indicative of L1), Lamp5 (indicative of L2/3 together with L1), Vip (indicative
ofL2/3), Sst (indicative of L5 and L6 together with L2/3), and Pvalb (indicative
of L5and L6 together withL2/3). Thelineindicates the median, the inner box
corresponds to 25™and 75" quartiles, and the whiskers span up to 1.5 times the
interquartile range of log-normalized gene expression values. d, Scatter plot
of cells by their spatial coordinates in the example coronal section with cells
colored by their log-normalized expression (upper row) compared to mouse
brain coronal sections from the Allen braininsitu hybridization atlas at

https://mouse.brain-map.org/ (credit: Allen Institute) (bottom row) for five
different cortical layer or neuronal markers. e-h, Region-specific composition
changesinthe coronal section dataset across the four regions (cortex, striatum
and adjacentregions, corpus callosum and anterior commissure, lateral
ventricles). Line and error bands represent regression line of best fitand
corresponding 95% confidenceinterval. Pearson correlations between cell
type compositionand age are reported along with their 95% confidence
interval.Strongincreasesincell type proportion with ageareinred and strong
decreasesincelltype proportionwithageareinblue (see Methods). Shown are
plots for (e) oligodendrocytes, (f) oligodendrocyte progenitor cells (OPCs),

(g) T cells, and (h) microglia. i, Global cell type composition changes with each dot
representinganindividual mouse in the sagittal section dataset with the same
plotting and statistical parametersasin (e-h).j, Scatter plot of cells by their
spatial coordinates across all ages for all sagittal sections with cells colored by
celltype: T cell (red), neural stem cell (NSC) (blue), other cell type (gray).
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Extended DataFig.4 | Gene expression changes and trajectories with age.
a,b, Smoothed median and interquartile range (error band) of the mean gene
expression z-scores across age of allgene, cell type, and subregion combinations
splitinto k clusters (determined by k-means clustering) (see Methods) for (a)
k=15and (b) k=3.Pearson correlation (r) between median gene expression
z-score and age isshown, and the number of trajectories within each cluster is
noted inside parentheses. ¢, Heatmap of GO biological process terms with
color scale corresponding to negative logl0 P-value from Fisher’s exact test for
thetop three terms thatare significantly enriched for MERFISH genesin each of
the nine annotated gene trajectory clusters for oligodendrocytes in the corpus
callosum and anterior commissure region, which corresponds to an abundant
celltypeintheregionwith the greatest gene expression change with age
(Supplementary Fig. 1c). See Supplementary Table 9 for all GO biological

processenrichmentresults. d, Heatmaps showing spatiotemporal trajectory
cluster membership across all subregions and cell types for select genes with
distinct patterns: interferon gene /fi27 (broad “Increasing Gradual”),
antioxidantenzyme gene Cat (cell type-specific “Decreasing Gradual”), major
histocompatibility complex protein-encoding gene H2-K1 (cell type-specific
“IncreasingLate”), interferon-response gene Bst2 (mixed “Increasing Late”
and “Increasing Gradual”), cell senescence marker Cdknla (broad “Increasing
Gradual”), DNA damage repair gene Brcal (broad “Decreasing Gradual” with
“Increasing Gradual” insome cell types), Fcreceptor gene Fcrls (cell type-
specific “Decreasing Gradual”), and cellular apoptosis gene Casp2 (cell type-
specific “Decreasing Early” and “Increasing Gradual”). e, Scatter plot of cells by
their spatial coordinates across all coronal sections and ages with cells colored
by scaled log-normalized gene expression of [fi27 (red) and Cat (blue).
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Extended DataFig.5|See next page for caption.
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Extended DataFig. 5|Specificity and robustness of spatial aging clocks.
a-c, Dot plots evaluating the predictive performance of aging clocksin various
contexts. Colors correspond to Pearson correlation between predicted age
and actual age and the size of the dots are inversely related to the mean absolute
error between predicted age and actual age. Shown are comparisons for (a)
spatial aging clocks trained and evaluated using different numbers of nearest
neighborsinthe SpatialSmooth processing step; (b) spatial aging clocks trained
and evaluated onthetwoindependent cohorts (n =10 per cohort) in the coronal
section dataset comparedto thespatial aging clock trained on the full (combined)
dataset; (c) spatial aging clocks trained on one of the independent cohorts
(n=10 per cohort) inthe coronal section dataset and evaluated on the other
independent cohort. d, Table comparing Pearson correlation of median
predicted age and actual age of individual mice between the spatial aging
clocks and existing single-cell RNA-seq aging clocks for six shared cell types.
Cross-validation was used to generate predicted ages for both clocks within
theirrespective training datasets. e,f, Heatmaps of GO biological process
terms with color scale corresponding to negative log10 P-value from Fisher’s

exacttest for (e) the top three terms that are significantly enriched for genes
with positive coefficients per cell type-specific spatial aging clock and (f) the
top three terms thatare significantly enriched for negative coefficients percell
type-specific spatial aging clock. g-j, Dot plots evaluating the predictive
performance of aging clocksin various contexts. Colors correspond to Pearson
correlationbetween predicted age and actual age and the size of the dots are
inversely related to the mean absolute error between predicted age and actual
age.Shown are comparisons for (g) cell type-specific spatial aging clocks
appliedto predictage forall other cell typesin the coronal section dataset;

(h) spatial aging clocks evaluated within each of the subregions in the coronal
section dataset; (i) spatial aging clocks (Global) and subregion-specific spatial
aging clocks (Regional) applied toall cellsin the coronal section dataset;

(j) subregion-specific aging clocks applied to all cells within the same subregion
(On) comparedtoall cellsin other subregions (Off). The largest mean absolute
errorsare observedin the off-diagonal elements of panel g (for examplein
comparison to panelh, whichgenerally had lower mean absolute errors).
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Extended DataFig. 6 | Generalizability of spatial aging clocks. a-e, Density
of predicted ages computed using spatial aging clocks for different age groups
inthe following datasets: (a) publicly available MERFISH dataset in female mice
acrossjuvenile (0.93 months), young (5.58 months), and old (20.93 months)
age timepoints, with the dataset sharing 75 genes in common with the coronal
section dataset; (b) publicly available single-nuclei RNA-seq dataset in female
mice acrossjuvenile (0.93 months) and old age (20.93 months) timepoints,
with the dataset sharing 295 genes in common with the original dataset;
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(c) cerebellumregioninthe MERFISH sagittal section dataset with young

(<9 months) and old (>19 months) age bins; (d) olfactory bulbregioninthe
MERFISH sagittal section dataset with young (<9 months) and old (>19 months)
agebins; (e) publicly available single-cell RNA-seq dataset of whole brain from
male mice at young (2-3 months) and old (21-22 months) age, with the dataset
sharing 264 genesincommon with the coronal section dataset. Missing genes
were imputed using SpaGE before spatial aging clock predictions were obtained.
For statistics, see Supplementary Table 12.
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Extended DataFig.7|Rejuvenatingintervention experiments.a,b, UMAP
visualization of all cells by age and experimental condition for the (a) exercise
cohortand (b) partial reprogramming cohort. c,d, Box plots showing cell type
proportions for each cell type and across experimental conditions for the (c)
exercise cohortand (d) partial reprogramming cohort. Dots indicate proportions

forindividual mice (n =4 per condition). Thelineindicates the median, the box
corresponds to25™and 75" quartiles, and the whiskers spanup to 1.5 times the
interquartile range. P-values computed using two-sided Mann-Whitney test.
Notsignificant P> 0.05 abbreviated as “NS”.
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Extended DataFig. 8|See next page for caption.
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Extended DataFig. 8| Spatial aging clocksrecord adverse interventions.

a, Density of predicted ages across different experimental conditions and ages
for spatial aging clocks correspondingto four cell types with accelerated aging
under LPS-induced inflammation. For statistical analysis, see Supplementary
Table12.b, Boxplots of the oligodendrocyte inflammation score computed on
scaled log-normalized gene expression values from the LPS MERFISH dataset
for oligodendrocyte progenitor cells (OPCs) (top) and oligodendrocytes
(bottom) across four anatomic regions and compared between LPS-injected
and control conditions. P-values computed using two-sided Mann-Whitney
test. For OPCs: CC/ACO controln=916 cells, CC/ACO LPS n=621cells; CTX
controln=2071cells, CTXLPS n=1391cells; STR control n=432cells, STRLPS

n=388cells; VEN controln=35cells, VEN LPS n =27 cells. For oligodendrocytes:

CC/ACO controln=23858 cells, CC/ACO LPS n=12591cells; CTX control
n=13222cells, CTXLPSn=7548 cells; STR control n=4690 cells, STRLPS
n=4050cells; VEN control n=241cells, VENLPS n=110 cells. The line indicates
the median, the box corresponds to 25" and 75" quartiles, and the whiskers
spanuptol.5timestheinterquartile range with diamonds showing outlier
values. ¢, Density of predicted ages across different experimental conditions
and ages for spatial aging clocks corresponding to four cell types with
accelerated aging in Alzheimer’s disease models. For statistical analysis,

seeSupplementary Table12.d,e, Heatmaps showing the effect of adverse
interventions on predicted age for different cell types, measured as the difference
inmedian predicted age between intervention and control conditions, across
differentage groups, under (d) systemic inflammatory challenge by LPS
injection across female juvenile (0.93 months), young (5.58 months), and old
(20.93 months) mice and (e) for Alzheimer’s disease model male mice across 8
and 13 months of age. Gray “X” denotes cell types and regions with insufficient
numbers of cells (<50). f, Heatmap showing the effect of global demyelination
injury (EAE model of multiple sclerosis) on predicted age for different cell types
andregions, measured as the difference in median predicted age between
intervention and control conditions for the EAE model inyoung (2.2 months)
male and female miceinaninsitusequencing dataset. Gray “X” denotes cell
typesand regions withinsufficient numbers of cells (<50). “SN_HY_SI” refers
totheregionbetween the ventricles containing the substantia nigraand
hypothalamus. g, Scatter plot of cells by their spatial coordinatesin the localized
demyelinationinjury MERFISH dataset with cells colored by the positive age
acceleration (age acceleration with a floor value of zero) obtained from the
spatial aging clocks. The leftmost column shows all cells with the site of injury
marked withanarrow, and the other columns showsselect celltypes. Three coronal
sections at different depths are shown across the rows.
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Extended DataFig. 9 |Specificity and robustness of cell proximity effects.
a, Histogram showing distribution of negative log10 P-values from Levene’s
test forequal variance between age acceleration of “Near” versus “Far” cell
groups for each of the observed cell proximity effects. Solid vertical black line
indicates the Bonferroni-adjusted cutoff corresponding to P=0.05.b, Target
celltypes ranked by their mean absolute proximity effect experienced across
alleffector cell types. ¢, Heatmap showing the proximity effect for different
cell type proximity relationships separated by brain region for microglia for
NSCsand T cells. Rows correspond to the effector cell type and columns
correspond tothe targetcelltype, which experiences the proximity effect by
the effector cells. “X” denotes proximity relationships for which there were
insufficient cell pairings (<50) to compute a proximity effect (see Methods).
d, Spatial visualization of cells within 100 microns from an example T cell (left)

Unit Distance from Cell

and NSC (right) with colors corresponding to age acceleration. e, Heatmap
showing the proximity effect for different cell type proximity relationships
separated by young (<16 months) and old (>16 months) for NSCsand T cells with
the same plotting and statistical parameters asin (c). f, Mean of the average
proximity effects for agiven effector celltype onall other target cell types
ranked from most pro-aging (positive aging effect) to most pro-rejuvenating
(negative aging effect) across seven datasets (see Supplementary Table15).

g, Spatial gradation of the proximity effect asafunction of the unit distance from
thetarget cell (see Methods) for three select pro-aging proximity relationships
with T cellasthe effector cell type and three select pro-rejuvenating proximity
relationships with NSC as the effector cell type. Cutout shows scheme for spatial
gradation analysis.
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Extended DataFig.10 | Controls forinflammation and proliferation.

a, Boxplots of the glial activation/inflammation gene signature score for “Far”
and “Near” activated/inflamed glianear T cells (activated/inflamed status
determined by top 0.2% expression of signature). For activated microglia,n=15
cellsnear T celland n=16 cells far from T cell. Forinflamed oligodendrocytes,
n=64cellsnear Tcelland n = 64 cells far from T cell. The line indicates the
median, thebox corresponds to 25" and 75" quartiles, and the whiskers span
uptol.5timestheinterquartile range with diamonds showing outlier values.
P-values computed using two-sided Mann-Whitney test. b,c, Density plots and
histograms showing the nearest distance to different cell types for (b) all
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activated microgliaand (c) allinflamed oligodendrocytesin the coronal
sectiondataset. Numbers of cells for each cell type arelisted in parentheses in
thelegend. d, Schematic showing expected heatmaps (left) for different T cell
proximity effect scenarios and the observed heatmap (right) showing the T cell
proximity effect onglial cell subtypes (activated/inflamed status, see Methods).
e, Schematic showing expected heatmaps (left) for different NSC proximity
effectscenarios and the observed heatmap (right) showing NSC proximity
effect onterminal cell typesinthe NSClineage (astrocytes, oligodendrocytes)
and cellsnotin the lineage (microglia, endothelial cells, pericytes) reproduced
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c, Average proximity effect of NSCs on nearby cells computed fromall cellsin the
partial reprogramming dataset for each of the three experimental conditions
(Young Control, Old Control, Old OSKM). There were no T cells detected in the
partial reprogramming mouse model (see Methods).

Extended DataFig.11|Impact of exercise and partial reprogrammingon
proximity effects. a,b, Average proximity effects of (a) T cellsand (b) NSCson
nearby cells computed fromall cells in the exercise dataset for each of the three
experimental conditions (Young Sedentary, Old Sedentary, Old Exercise).
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Extended DataFig.12|1ldentificationand validation of potential mediators
of cell proximity effects. a, Schematic of the computational pipeline using
SpaGE and Tangram algorithms for spatial gene expression imputation and
using TISSUE for uncertainty-aware differential expression testing of imputed
gene expressionand gene signatures related to potential mediators of proximity
effects. b, Histograms of gene-wise performance metrics for SpaGE imputation
comparing predicted to actual gene expression using Pearson correlation (left)
and mean absolute error (right). ¢, Histogram showing distribution of negative
logl0 P-values from Levene’s test for equal variance between SpaGE-imputed
geneexpressionin “Near” versus “Far” cellswith respect toNSCs or T cells.
Solid vertical black lineindicates the Bonferroni-adjusted cutoff corresponding
to P=0.05.d, Bar plots showing the top five most enriched GO Biological
Processes for significantly upregulated genesin more pro-aging T cells compared
tolesspro-aging T cells. P-values computed from EnrichR pathway enrichment
analysis. e, Average proximity effects of T cells computed from all nearby
cellsinthe LPS MERFISH study for each of the two experimental conditions

(Old Control, Old LPS) withreduced Ifng expressionin Old LPS condition.
f,Immunofluorescence staining image of a perfused mouse brain section from
anold (28 months old) male mouse highlighting elevated STAT1 fluorescence
(magenta)incellsnear T cells (marked by arrows, top panels) compared to cells
notnear T cells (bottom panels) in the lateral ventricles. Images were taken
fromthesamebrainsection. g, Bar plots showingthe top five most enriched
GOBiological Processes for significantly upregulated genesin more pro-
rejuvenating NSCs compared to less pro-rejuvenating NSCs. P-values computed
from EnrichR pathway enrichment analysis. h,Immunofluorescence staining
image of the perfused mouse lateral ventricle fromayoung (3.5 months) male
mouse with cutouts highlighting elevated CPT1A fluorescencein cells near
NSCs (S100A6%) with high CD9 fluorescence compared to cells not near NSCs.
Arrows within white rectangles label example cell near NSC and example cell
notnear NSC. i, Summary of T celland NSC proximity effects and their potential
mediators.



