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SUMMARY

Oct4, Sox2, and KlIf4 (OSK) Yamanaka factors induce pluripotency and reverse age-related
epigenetic changes, yet the mechanisms by which they promote rejuvenation remain poorly
explored. Oxidative stress contributes to CNS aging and retinal pigmented epithelium (RPE)
degeneration in age-related macular degeneration. We find that OSK expression in RPE restores
retinal structure and visual function in aged mice and promotes oxidative resilience through a non-
canonical, Tet2-independent pathway. Integrative functional genomics identifies GSTA4, a
detoxifying enzyme that clears the lipid peroxidation byproduct 4-HNE, as a necessary and
sufficient OSK effector. Dynamic GSTA4 regulation by OSK recapitulates a stem cell derived
stress resilience program. GSTA4 overexpression alone enhances mitochondrial resilience,
rejuvenates the aged RPE transcriptome, and reverses visual decline. GSTA4 is consistently
upregulated across diverse lifespan-extending interventions suggesting a broader pro-longevity
role. These findings uncover a previously unrecognized protective axis driven by Yamanaka
factors that circumvents reprogramming, providing therapeutic insights for age-related diseases.

HIGHLIGHTS
e OSK-GSTA4 provides a dynamic, Tet2-independent stress-resilience axis.
e Functional genomics pinpoints GSTA4 as a direct downstream effector activated by OSK.
e RPE aging involves progressive accumulation of 4-HNE that can be detoxified by GSTA4.
e Enhancing GSTA4 rejuvenates RPE cells, restores vision and is associated with lifespan-

extending interventions.

INTRODUCTION

Aging is a complex and multifaceted degenerative process involving a variety of molecular
mechanisms such as epigenetic alterations, telomere attrition, dysregulated nutrient sensing and
oxidative stress. Among them, oxidative stress can impact nearly all major hallmarks of aging,
most notably genomic instability, mitochondrial dysfunction, cellular senescence, and stem cell
exhaustion !, by both impairing protein function ? and generating toxic byproducts. Among all
tissues, the role of oxidative stress in driving degeneration is perhaps most clearly established in
the retina, an extension of the central nervous system. Oxidative stress emerges early in both the
brain and retina and progressively worsens with age ®, fueled by environmental exposures,
metabolic byproducts, and declining mitochondrial function. This cumulative stress ultimately
disrupts cellular integrity and undermines tissue homeostasis.

Age-related macular degeneration (AMD), the leading cause of irreversible vision loss
affecting over 200 million people worldwide *, is a prime example of oxidative stress-driven
pathology. Dry form of AMD, which accounts for 90% of cases, is driven by degeneration of the
retinal pigment epithelium (RPE), a layer highly vulnerable to oxidative damage from chronic light
exposure and bisretinoid lipofuscin buildup which elevates reactive oxygen species (ROS) over
time®. The causal role of ROS in AMD is supported by the AREDS2 study, where antioxidant
supplementation slowed disease progression °. The two recently approved therapies for dry AMD
treatment provide only modest benefit, likely reflecting the fact that they target components of the
alternative complement pathway, a cascade that is activated after oxidative stress has already
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injured the retina, rather than addressing that upstream damage directly ’. This highlights an
unmet need to identify novel pathways that enhance oxidative resilience and counteract ROS-
induced damage.

Over the past decade, partial epigenetic reprogramming through transient expression of
all or subsets of the Yamanaka factors (Oct4, Sox2, KIf4, and c-Myc, aka OSKM) has emerged
as a promising strategy to restore youthful tissue function in vivo *'*. Dual AAV-mediated delivery
of OSK without the c-Myc oncogene has been shown to rejuvenate post-mitotic retinal ganglion
cells (RGCs), promoting axon regeneration and restoring vision in either glaucomatous or aged
mice, with long-term expression via AAV2 proving safe for up to 18 months ®'*. This system also
has demonstrated efficacy in multiple sclerosis mouse models '°. Beyond the eye, AAV-OSK
induces epigenetic rejuvenation in kidney and muscle '®, and reproducibly contributes to lifespan
extension in aged wild-type mice '"'®. Notably, it has also shown promise in a non-human primate
model of non-arteritic anterior ischemic optic neuropathy, a common optic neuropathy °.

Despite its therapeutic potential, the mechanisms through which OSK(M) exerts functional
rejuvenation remain poorly defined. A few mediators of partial epigenetic reprogramming,
including Tet1/2° and Top2a®, have been identified, that facilitate chromatin and DNA
modifications in cooperation with OSK. However, the broader network of OSK downstream
effectors, those functional units that directly carry out the biological effects, remain less well
explored. Additionally, toxicity of prolonged OSKM expression has been reported in liver,
intestine?’ and a few brain cell types such as astrocyte and microglia 2, which could limit broad
application of partial epigenetic reprogramming. A better understanding of how OSK(M) acts, and
what its downstream effectors are, could enable more specific and safer approaches of
rejuvenation, bypassing the associated safety concerns of prolonged expression 22,

Here we explore the effect of OSK partial reprogramming in RPE cells, which operate
under high oxidative load offering a robust model for probing how rejuvenation programs confer
resistance to oxidative challenges. Enabled by a functional genomics approach, our study
uncovers a rejuvenation axis involving GSTA4 activation, that bypasses reprogramming-induced
dedifferentiation. This pathway acts in a dynamic regulation manner instead of through Tet2 to
protect against oxidative damage, potentially opening new therapeutic avenues for aging and
age-related diseases.

RESULTS
OSK Protects the RPE from Oxidative Stress and Age-related Degeneration

Although ROS buildup has been documented in aging human RPE %, it has not been directly
measured in mouse RPE. To address this gap, we performed ROS staining and observed a
significant, age-related increase in ROS in murine RPE (Figure 1A-1B). These findings validate
aged mice as a model that recapitulates human RPE oxidative damage and support their use for
testing novel therapeutic interventions.

To investigate whether partial epigenetic reprogramming can rescue tissues undergoing
oxidative damage, we injected our previously described dual AAVs that allows constitutive
expression of OSK (AAV2-tTA; TRE-OSK) ? into the subretinal space of 15-month-old mice,
allowing OSK expression in the RPE (Figure 1C). We chose the AAV2 serotype as it
demonstrates high RPE tropism via subretinal injection in a FDA approved gene therapy %?°. We
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then tracked their visual acuity using the optomotor response (OMR) assay. As seen with the
approved RPE gene therapies 2%, visual acuity is primarily driven by high-acuity regions rather
than the average function across the entire retina. Therefore, improving even the localized area
of the RPE that is transduced by AAV, could be sufficient to enhance OMR scores (Supplemental
Discussion). Notably, the OSK-treated eyes exhibited significantly improved vision starting at 4
weeks post-injection, and by 8 weeks, visual function was comparable to that of 3-month-old
young mice (Figure 1D). By contrast, matched control eyes with constitutive expression of GFP
(AAV2-tTA; TRE-d2EGFP) remain unchanged from their baseline visual acuity (Figure S1A).

This OSK-mediated functional enhancement encouraged us to look further into the
potential benefits of OSK treatment on RPE morphology. To distinguish changes in retinal
histology and RPE ultrastructure at the AAV injection site, we developed a cornea marking
technique to locate the AAV injection site even after enucleation of the eye and during tissue
processing (Figure 1E). Aging in the RPE is marked by loss of melanin granules, lipofuscin
buildup, basal deposits, Bruch’s membrane thickening, microvilli atrophy, abnormal apical
mitochondria with loss of cristae and disorganized basal infoldings®® (Figures 1F-1G). These
changes are also features of AMD donor tissues ?, where they are even more pronounced 2.
The site containing the AAV-OSK treated RPE cells displayed a youthful level of RPE melanin
granules (Figure 1F), a key indicator of RPE health as adequate melanin helps absorb stray light
and reduce photo-oxidative damage. This site also displayed reduced lipid deposits, increased
basal infoldings (Figure 1G), and mitochondria have restored membrane shape with increased
cristae %° (Figures S1B-S1C). While aging is a primary risk factor for AMD, genetic risk and
lifestyle are also major contributors to the development of AMD. Therefore we tested if AAV-OSK
was effective in an AMD mouse model, in which 2-year-old CFH-H402/H402:Cfh-/- (CFH-H/H)
mice carrying the human complement factor H (CFH) Y402H risk allele were placed on a high-fat,
cholesterol enriched (HFC) diet 2°. Notably, AAV2-OSK significantly reduces RPE multinucleation,
a measurement of RPE dysmorphia in this mouse model (Figures 1H and S1D). Collectively,
OSK expression in aging RPE demonstrates strong protection against oxidative stress: it restores
visual function, improves histological architecture, and protects against aging as well as AMD-
associated stressors such as a HFC diet and complement-mediated risk.

Although OSK confers these benefits in RPE without affecting retinal thickness (Figure
S1E), prolonged expression beyond 8 weeks leads to detectable photoreceptor toxicity measured
by electroretinogram (ERG) (Figure S1F). Notably, this toxicity was not observed in RGCs even
after sustained OSK expression for over a year', likely reflecting differences in cellular context
and function *°. The enhanced tissue function and delayed toxicity in RPE may result from OSK’s
mixed transcriptomic profile: using a transcriptomic aging (tAge) clock 3!, we observed that OSK
expression paradoxically increases tAge in mouse RPE in vivo (Figure S$1G), as it not only
‘rejuvenates’ the cytoskeletal/glycolytic and inflammation gene modules, but also simultaneously
activates the interferon signaling and mTOR signaling that have “pro-aging” roles (Figure S1H).
The combination of strong functional restoration with short-term expression and the toxicity
concerns associated with prolonged expression, prompted us to dissect OSK’s mechanism and
identify the downstream effectors responsible for its benefits.
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OSK Enhances Mitochondrial Resilience via a Dynamic, Tet2-Independent Mechanism

To identify the molecular mechanism by which OSK protects RPE cells against oxidative stress,
we turned to RPE cell culture models. We engineered DOX-inducible lentiviral vectors expressing
human OSK and used these to infect the human RPE cell line ARPE-19 (Figure 2A), which is
highly amenable to lentiviral transduction compared to primary RPE cells and iPSC-RPE cells 32
3 Unlike many studies that use ARPE-19 cells in their growth phase =", we applied an
optimized maturation protocol, including nicotinamide treatment ¥, and ensured three weeks of
maturation, which resulted in RPE cells with morphology that more closely reflects their in vivo
characteristics (Figure 2B). After four days of OSK induction, we exposed the cells to four
different oxidative stressors, sodium iodate [NalOs] ***', oxidized low-density lipoprotein [ox-LDL]
42 cigarette smoke extract **, tert-Butyl hydroperoxide [tBH] **, as well as an AMD associated
stressor complement*®, then evaluated cell viability by lactate dehydrogenase (LDH) release and
cell replating survival assays. The negative d2EGFP controls offered no protection against any
insult and, as a putative positive control, we increased expression of NRF2, a potent activator of
a variety of protective pathways against oxidative stress *¢, which only protected RPE cells against
cigarette smoke extract. By contrast, OSK provided significant protection against ox-LDL, tBH,
complement, and most robustly, NalOs (Figures 2C and S2A). NalOs is a potent prooxidant that
increases mitochondrial ROS (Figure 2D), and is widely used in preclinical models of AMD to
trigger RPE injury 3**'. OSK expression protected mitochondrial respiration from NalOs-induced
damage (Figure 2E), and functional mitochondria were required for this protective effect (Figure
S$2B). To determine if OSK’s oxidative protection is specific to RPE cells, we expressed OSK via
doxycycline in mouse fibroblast cell lines derived from young and aged Rosa26-M2rtTA/Col1a1-
tetOP-OKS transgenic mice®*’. Consistent with our findings in RPE cells, OSK robustly protected
fibroblasts against NalOs-induced oxidative stress (Figures 2F and S2C). This shows that the
oxidative resilience activated by Yamanaka factors is found in at least two cell types and two
species.

Next, we investigated whether OSK-induced oxidative resilience follows the canonical
pathway. OSK did not directly lower ROS levels in RPE cells (Figures 2G and 2H), suggesting it
acts downstream of the ROS response. Our previous work demonstrated the mechanism of OSK-
induced rejuvenation of retinal ganglion cells was dependent on Tet2 mediated CpG
demethylation °, and supported by another study inhibiting DNMT3a methylation to achieve similar
effect *®; we therefore tested whether the oxidative protection in OSK-treated RPE cells is
mediated through this same Tet2 dependent pathway. Surprisingly, neither CRISPR-Cas9
knockout of Tet2 (Figures 2l and S2D-S2E) nor widely used Tet2 knockdown by shRNA (Figures
S2F-S2G) blocked OSK-mediated protection in NalOs-treated RPE cells. Consistent with the
absence of stable DNA methylation-associated memory, the oxidative protective effect requires
continuous OSK expression: transient OSK expression followed by withdrawal of OSK failed to
maintain oxidative protection in NalOs-treated RPE cells (Figures 2J and S2H-S2lI). Collectively,
these findings demonstrate that sustained OSK expression triggers a non-canonical, Tet2-
independent resilience program that safeguards cellular function against oxidative insults.
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GSTA4 Is a Necessary and Sufficient Downstream Effector of OSK-Mediated Oxidative
Protection

The above data demonstrated that OSK confers anti-oxidative benefits across three distinct model
systems: aged mouse RPE cells under age-elevated oxidative stress, and human RPE cells and
mouse fibroblasts exposed to oxidative stressors in vitro. To uncover the common molecular
mechanisms underlying these effects, we generated three comprehensive transcriptomic
datasets: (1) human ARPE-19 cells overexpressing OSK or GFP for four days; (2) RPE cells from
aged mice expressing AAV-OSK or AAV-TA for five weeks; and (3) young and aged mouse
fibroblast lines with or without OSK expression for six days (Figure 3A). To identify potential
downstream effectors, we first pinpointed differentially expressed genes (DEGs) shared across
all three models (Figure 3B) and assessed whether their expression correlated with survival rates
against NalOs-induced oxidative stress (Figure 3C). This analysis led us to nominate six
candidate effectors: Gsta4, Aldh3a1, Pipox, Ccdc3, Nrarp, Phyhip (Figures 3C and S3A), based
on their strong induction by OSK across all three systems and tight correlation with oxidative
protection. We then cloned each of these candidates, along with the poorly correlated Carns1 as
a negative control, into doxycycline-inducible vectors to create stable ARPE-19 lines. After three
weeks of maturation, we induced overexpression for four days and performed an arrayed screen
to evaluate their ability to protect against NalOs-induced oxidative stress (Figures 2A and 3D).

Among the candidate genes, GSTA4 emerged as the sole factor that was sufficient to
provide significant oxidative protection to RPE cells (Figures 3D,3E and S3B) and successfully
recapitulated OSK’s ability to protect mitochondrial function under NalOs-induced oxidative
challenge (Figure 3F). Immunostaining and Western blot analysis confirm OSK up-regulating
GSTA4 at the protein level, and importantly, CRISPR-Cas9-mediated knockout of GSTA4
abolished OSK’s protective effects against NalOs-induced oxidative stress (Figures 3G-l and
Figure S3C), while knockout of a non-expressed control gene OR1F1 does not (Figure 3l). In
aging and disease, RPE cells down-regulate oxidative phosphorylation and up-regulate epithelial-
to-mesenchymal transition (EMT) pathways “®*°. At the transcriptomic level, overexpression of
either OSK or GSTA4 alone in ARPE-19 cells reverses these effects; both upregulating oxidative
phosphorylation and down-regulating EMT (Figures 3J and S3D). Together, we identify GSTA4
as a necessary and sufficient downstream effector of OSK, mediating its oxidative resilience and
mitochondrial protective effects.

OSK Reactivates a Developmentally Regulated GSTA4 Stress Resistance Pathway

To understand how the three Yamanaka factors (OSK) regulate GSTA4, we first examined
whether any of the individual factors could induce its expression. Interestingly, each individual
factor produced a modest rise in GSTA4, an effect unique among the candidates, while their
combined expression markedly amplified GSTA4 induction (Figure 4A). Why do all three stem-
cell factors converge on GSTA47? We suspect this redundant activation safeguards stem cells by
providing critical oxidative resilience. To examine its functional relevance, we revisited our
published CRISPRI screen dataset in human stem cells °'; analysis of this unbiased dataset
showed that GSTA4 knockdown indeed significantly diminishes stem-cell fitness and growth,
underscoring its essential oxidative protective role (Figure 4B).
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Considering the OSK-induced protection from oxidative stress does not sustain (Figure
2J), we suspect that OSK-mediated upregulation of GSTA4 is acute but also dynamic. To
examine this, we performed ATAC-seq in cells with either sustained or transient OSK expression.
As expected, when OSK was expressed, chromatin accessibility at the GSTA4 promoter
increased, and it returned to a closed state once OSK was removed (Figure 4C). This dynamically
regulated chromatin accessibility parallels GSTA4 RNA expression levels in both human RPE
cells and mouse fibroblasts, where its RNA expression significantly declines upon OSK
withdrawal (Figures 4D, 4E). Notably, the newly accessible chromatin region at the GSTA4
promoter harbors binding motifs for all three factors Oct4, Sox2 and Klf4 (Figure 4C). To map
factor binding at a high resolution, we applied a novel deep-learning—based seq2PRINT method
%2 that allows precise inference of transcription factor binding. seq2PRINT inferred significantly
increased KIf4 and Sox2 binding at the proximal Gsta4 promoter region during OSK
overexpression. Importantly, upon OSK withdrawal, such occupancy returns to baseline (Figure
4F). This rapid remodeling at the Gsta4 promoter parallels the dynamic GSTA4 induction, and
aligns with the Tet2-independent, memory-free nature of the OSK-induced oxidative protection.

The above observations raise the question of why the activation of GSTA4 occurs in a
rapid and reversible manner. We propose that it might be important for GSTA4 to be down-
regulated as stem cells exit pluripotency, permitting the ROS surge that drives mesendoderm
differentiation — an idea supported by evidence that elevated ROS is essential for this lineage
commitment *3. To explore this, we performed more detailed analysis of single-cell datasets from
embryonic stem cells ** (Figure S4A and S4B). The analysis revealed high GSTA4, Oct4, Sox2
expression post implantation, followed by a sharp decline during mesendoderm commitment
(Figures S4C and S4D). It also coincides with the activation of EMT genes that are known drivers
of mesoderm formation (Figure S4E). This observation suggests a potential evolutionary
advantage to the dynamic regulation of GSTA4: a swift downregulation of GSTA4 following OSK
withdrawal may permit a ROS surge that facilitates mesendoderm formation, in line with evidence
that ROS scavengers inhibit this process °°. Taken together, our analysis reveals dynamic GSTA4
regulation by OSK, and suggests that this protective mechanism may be programmed to turn off
during development-unless reactivated through ectopic OSK expression.

AAV-Mediated GSTA4 Expression Improves Vision and Reduces 4-HNE in Aging RPE

Building on the in vitro benefits, we next asked whether GSTA4 alone could reproduce OSK’s in
vivo effects (Figure 1D). We packaged GSTA4 in an AAV2 vector and, after recording baseline
OMR in 15-month-old mice, delivered subretinal AAV-GSTA4 to one cohort and AAV-GFP to
controls (Figure 5A). Notably, the GSTA4-treated eyes showed significantly improved visual
function beginning at 6 weeks post-AAV injection with progressive improvements by 8 weeks
(Figure 5B and Supplemental Videos). No toxicity or detriment to retinal thickness was observed
following 8 weeks of GSTA4 overexpression (GSTA4-OE) in RPE cells (Figures S5A-S5B), nor
was any photoreceptor-layer toxicity detected by full-field ERG (Figure S5C), indicating a safer
profile than prolonged OSK expression (Figure S1F).

To better assess localized functional gains, we applied a light adapted multifocal
electroretinogram (mfERG) system, which stimulates many retinal areas simultaneously and
records localized responses, overcoming full-field ERG’s limitation of capturing only a summed
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signal from the entire retina (Supplemental Discussion). The recordings indicated enhanced
retinal electro-function to light in GSTA4 overexpressing eyes, with higher electrical responses to
light stimuli near the AAV-GSTA4 injection site (Figures 5C and 5D).

GSTA4 is a member of the glutathione S-transferase family that plays a crucial role in
detoxifying 4-hydroxynonenal (4-HNE), a harmful byproduct of lipid peroxidation *°. Because
oxidative stress rises with RPE aging (Figures 1A and 1B) and lipid peroxidation is observed in
RPE dysfunction?®, we assessed 4-HNE levels in young and old eye samples. We observed a
progressive, age-correlated increase in 4-HNE within the retina-RPE (Figures 5E and S5D), with
significantly higher 4-HNE accumulation in aged RPE flatmounts compared to young (Figures 5F
and S5E), supporting 4-HNE as a potential age-related biomarker for RPE.

To test if GSTA4-OE could benefit at even older age, we subretinally injected AAV2-
GSTA4 into eyes of 24-month-old mice. Through flatmount staining, we observed that aged RPE
cells overexpressing GSTA4, compared to those not, exhibited significantly reduced levels of 4-
HNE (Figures 5G-5l). This aligns with GSTA4’s role in detoxifying 4-HNE by conjugating it with
glutathione to form the more soluble, less toxic GSH-HNE that can then be exported from the cell.
At ultrastructural morphology, similar to AAV-OSK (Figure 1G), AAV-GSTA4-treated eyes
showed less evident lipoprotein-rich basal deposits (BD) and cytoplasmic vacuolization (CV)
compared to control aging eyes (Figure 5J), while the number of cristae in RPE mitochondria
was restored to youthful level (Figures S5F-S5G), demonstrating an improvement in RPE health.
Together, we identified 4-HNE as an aging biomarker of RPE cells, and that enhancing GSTA4
expression bolsters the cellular defenses in aged RPE against toxic 4-HNE, reduces oxidative
damage, and restores RPE function and vision, supporting a causal role of 4-HNE in age-related
RPE degeneration and GSTA4-OE as a promising therapeutic intervention.

Reactivation of GSTA4 in Aged RPE Recapitulates the Molecular Signatures of Longevity
Interventions

Since we observed that GSTA4 treatment improves visual function in aged mice, we next asked
whether it likewise rejuvenates the transcriptome of aged RPE cells. Following 8 weeks of
GSTA4-OE, we collected RPE cells at 17-month-old and performed RNA-seq, along with young
and aged controls. Using a previously developed multi-tissue transcriptomic aging clock 3!, we
detected a pronounced aging signature in the young and aged control RPEs (Figure 6A), marked
by upregulation of inflammatory and complement pathway genes (Figure 6B). Remarkably,
GSTA4-OE reduced the transcriptomic age of aged RPE cells by 8.5 months — approximately 50%
of their chronological age — and induced a gene expression profile associated with reduced
expected mortality (Figures 6A and S6A). GSTA4 treatment shifted the transcriptome toward a
state more closely resembling young cells, particularly in the cytoskeletal, glycolytic, and
inflammatory gene modules (Figure S6B), similar to OSK. Importantly, this occurred without
activation of interferon or mTOR signaling, which are induced by OSK (Figure S1H). As a result,
GSTA4-OE reduced expression of inflammatory and complement pathway genes (Figure 6B)
while upregulating genes involved in mitochondrial function and fatty acid metabolism (Figure
S6C).

To assess the broader relevance of GSTA4-induced transcriptomic rejuvenation, we
compared gene expression changes in GSTA4-treated aged RPE cells with transcriptomic
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signatures of aging across multiple tissues and of established lifespan-extending interventions®.
The resulting correlation heatmap shows that RPE aging strongly resembles transcriptomic
changes in other aged tissues (e.g. brain, liver, kidney) and those associated with increased
mortality in rodents. Notably, AAV-GSTA4-treated RPE exhibits strong negative correlation with
aging signatures, and positive correlation with gene expression profiles associated with extended
maximum lifespan induced by multiple longevity interventions, such as caloric restriction (CR),
genetic models of growth hormone deficiency, and rapamycin (Figure 6C).

Using the previously developed mSALT tool %, which integrates gene expression
responses to various lifespan-expanding interventions in mouse liver, we found GSTA4 to be
significantly associated with murine maximum lifespan (Figure 6D) and upregulated across eight
individual longevity interventions, including CR and GHRKO - two of the most robust models of
lifespan extension — as well as several pharmacological pro-longevity treatments, including
metformin, acarbose, and 17a-estradiol (Figure S6D). When ranked by association between the
expression level and the magnitude of lifespan extension, GSTA4 ranked as one of the strongest
lifespan-associated genes, placing among the top 0.71% genes by statistical significance and
among the top 0.45% by normalized slope of association with maximum lifespan across
interventions (Figure S6E). Because RPE aging parallels that of other tissues (Figure 6C) and
hepatic GSTA4 induction is a common feature of multiple lifespan-extending interventions, our
findings raise the notion that reactivating GSTA4 in RPE engages conserved systemic anti-aging
pathways with the potential to safely promote longevity beyond the eye.

Glutathione Precursors Restores Oxidative Resilience via a GSTA4-Dependent Pathway

Given that GSTA4 detoxifies reactive aldehydes by conjugating them to glutathione, we asked
whether supplementing its substrate could likewise bolster oxidative resilience. Aging is
accompanied by glutathione depletion in human and mouse °’, yet direct supplementation of
glutathione often perturbs cellular redox homeostasis and can be deleterious. By contrast,
GIyNAC, a combination of two glutathione precursors glycine and N-acetylcysteine, supports
endogenous synthesis (Figure 6E) and has been shown to extend lifespan in 15-month-old mice
8 and improve metabolic and functional health in elderly humans *°. We hypothesize that
supplementing cells with GIlyNAC could accelerate the GSTA4-mediated detoxification process,
effectively mimicking the effects of GSTA4 upregulation. We confirmed that six-hour GlyNAC
treatment significantly elevated intracellular glutathione in RPE cells in vitro (Figure 6F). Indeed,
GIlyNAC co-treatment conferred robust protection against NalOs-induced oxidative challenge, an
effect that was abolished in GSTA4-knockout cells, demonstrating a GSTA4-dependent
mechanism (Figures 6G and S6F). GlyNAC did not induce cell proliferation when unchallenged,
so the effect cannot be explained by proliferation (Figure S6G). To rule out simple extracellular
quenching of NalOs, we tested structurally analogous compounds, alanine and N-acetyl-L-alanine,
which are not substrates for glutathione biosynthesis and these did not offer significant protection
against NalOs; (Figure 6G). Together, these results identify GSTA4 as the key mediator of
GlyNAC'’s cytoprotective effect in vitro, and suggest that supplementing precursors of glutathione
cofactor for GSTA4 may restore oxidative resilience in RPE, encouraging future investigations to
treat AMD.
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DISCUSSION

Over the past decade, partial epigenetic reprogramming has captured the attention of the aging
field by demonstrating that transient expression of some or all of the Yamanaka factors can reset
cellular age, restore function across diverse tissues and extend lifespan ®'3. However, the
multifaceted nature of the response to overexpression of Yamanaka factors, which impacts the
expression of thousands of genes and imparts permanent changes to the epigenetic state of a
cell, poses a challenge to efforts to understand the rejuvenation process or to use partial
reprogramming for broad clinical benefit, particularly in the tissues and cell types where toxicity
has been reported with prolonged OSKM expression'#2".

Ideally, for each tissue application one would identify and utilize the specific OSK(M)
downstream effectors—functional units that directly carry out the beneficial biological processes.
This has been a challenging task due to the lack of a readily screenable aging phenotype and the
limited passage capacity of primary aged cells, restricting unbiased genetic screens, except in
the case of aged stem cells that can be expanded ®°. Focusing on aging in RPE cells, key retinal
cells exposed to high oxidative stress whose decline contributes to AMD, we set out to address
this question by identifying a screenable phenotype and narrowing the scope of the screen using
integrative datasets and functional correlation-based candidate selection.

Here, we first characterize a novel OSK-induced trait: enhanced oxidative resilience in
RPE both in vitro and in vivo, mediated by a non-canonical, Tet2-independent mechanism that
does not leave a lasting memory (Figure 7A). RNA-seq analysis of three relevant cellular systems
that displays oxidative resilience upon OSK induction — human ARPE-19, primary mouse RPE
and fibroblasts — help reveal a core set of shared differentially expressed genes. By correlating
each gene’s induction magnitude with the degree of oxidative resilience, then performing an
overexpression screen, we identified GSTA4 as a key effector sufficient to largely recapitulate
OSK’s oxidative defense. Using CRISPR-based gene knockouts, we further demonstrated that
GSTA4 is necessary for OSK-mediated protection (Figure 7B). Most notably, GSTA4-OE in aged
RPE rejuvenates transcriptomic aging profile and improves visual functions—without the long-
term toxicity seen with OSK (Figure 7C). To our knowledge, GSTA4 is the first identified
downstream effector of partial reprogramming. Further exploration of OSK-regulated genes linked
to its benefits in other cellular contexts has a high chance to uncover additional effectors.

GSTA4 plays a crucial role in detoxifying 4-HNE, the toxic byproduct of lipid peroxidation
which has been implicated in a wide range of human diseases including cancer, diabetes,
cardiovascular and inflammatory complications ®'. Here we show that aged RPE cells accumulate
ROS and that 4-HNE rises progressively with age (Figures 5E and 5F). Together with our finding
of the functional benefits from GSTA4-OE, these observations provide additional support for the
proposal that oxidative stress damage acts as a primary driver of RPE dysfunction during aging.
Similarly, 4-HNE accumulation is characteristic of other neuro-degenerative disorders: its levels
are elevated in tissues and fluids from patients with Alzheimer’s disease (AD) and ALS, and 4-
HNE adducts localize to key pathological structures—such as neurofibrillary tangles and plaques
in AD, residual motor neurons in ALS, and Lewy bodies in Parkinson’s disease and diffuse Lewy
body disease ®2. Therefore, the consistent up-regulation of GSTA4 across multiple lifespan-
extending interventions suggests potential benefits for brain aging and supports its favorable
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safety profile as a therapeutic candidate for broader application in age-related disorders marked
by 4-HNE accumulation.

A recent study reported broad mesenchymal drift across aging and multiple diseases, and
further showed that partial epigenetic reprogramming can reverse this process . Our findings in
RPE aging resonate with this work, and further suggesting that oxidative stress and the
accumulation of 4-HNE may play a causal role in driving mesenchymal drift in the RPE, as GSTA4
counteracts these changes (Figure 3J). It would be interesting to explore how broadly GSTA4
can reverse mesenchymal drift across tissues and disease contexts.

Unlike the broad effects of partial reprogramming, targeting effectors like GSTA4 offers
the potential for a more precise and safer approach to activating rejuvenation. Beyond in vivo
gene therapy (Figure 7C), GSTA4 could be used to enhance iPSC-RPE for cell replacement
therapy 5. Identifying a single effector also enables pharmacologic targeting: raising intracellular
glutathione with its precursors (GlyNAC) reproduced the GSTA4-dependent protection in vitro.
Although GIyNAC has been linked to extended lifespan and improved mitochondrial function °¢,
our data reveal its specific potential for treating RPE aging and AMD.

While traditional chemical antioxidants (e.g. Vitamin C) work by directly neutralizing ROS
to delay the accumulation of cellular "trash", they can disrupt redox balance and interfere with
the signaling functions of ROS, and do not repair damage caused by oxidative stress °. In contrast,
detoxification through GSTA4 actively clears toxic byproducts (e.g. 4-HNE) generated from
oxidative damage (Figure 7B). Thus, while antioxidants slow the rate of decline, GSTA4-
mediated detoxification plays an additional reparative role that not only prevents further cellular
injury but also restores redox balance and mitochondrial function that essentially rejuvenates the
cell and provides tissue resilience (Figures 5 and 6).

It is worth noting that although GSTA4 regulation by OSK is Tet2-independent, our findings
do not conflict with prior studies either focusing on stable DNA methylation changes®'®, or
showing Tet2-dependent effects of OSK in retinal ganglion neurons, such as axon regeneration
and vision restoration *'*'5'% (Figure 7A). Indeed, the role of DNA demethylation in retinal
ganglion cells has been strongly supported by a more recent study demonstrating that inhibition
of DNMT3a, a process that echoes OSK-mediated TET activation, also promotes axon
regeneration and restores vision from neuronal injury *®. However, oxidative resilience and cell
body regeneration represent distinct cellular processes induced by OSK in two different cell types.
The distinct mechanisms by which OSK acts in these different contexts underscores the diversity
of restorative programs modulated by OSK, and the described Tet2-independent mechanism here
may help explain why sometimes extended or cyclic OSK(M) expression yields superior outcomes
than seen with transient expression #1865,

Using RNA profiling, ATAC-seq and a seq2PRINT approach for precise
transcription-factor-binding inference, we demonstrate that OSK dynamically and rapidly
regulates GSTA4 (Figure 4C-4F), consistent with its oxidative-protection pattern (Figure 2J). This
reversible activation of GSTA4 by ectopic OSK recapitulates its regulation during early
embryogenesis (Figures S4C-S4D). It suggests an evolutionarily conserved, stem-cell-intrinsic
program that guards against oxidative damage at the stem cell stage, yet upon OSK withdrawal,
yields to allow ROS-dependent developmental cues. This regulatory pattern may be an example
of the antagonistic pleiotropy theory of aging °®®, in which genetic programs that enhance early-
life fitness can incur late-life costs. In this case, we speculate the silencing of OSK and GSTA4
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around mid-gestation (~E7.5) is selected for its developmental advantages, but at the same time
it may be, at least partly, responsible for the onset of aging damage ©2.

Beyond supporting the antagonistic-pleiotropy model, our discovery helps unify the
epigenetic Information Theory of Aging ® with the Mitochondrial Free-radical Theory of Aging °:
age-related epigenetic silencing of GSTA4 appears to be an upstream switch that unleashes ROS
accumulation, promoting mitochondrial and cellular dysfunction. The fact that partial
reprogramming in aged tissue can re-engage this dormant detoxification pathway to promote
oxidative resilience (Figure 7A) suggests that there are additional stem cell-intrinsic anti-aging
mechanisms ' that could be repurposed for treating age-related diseases.

Looking forward, applying our functional genomic approach of phenotypic validation of
partial reprogramming, correlation of transcriptome changes with function, and targeted genetic
screens, provides a generalizable blueprint for deconvoluting complex rejuvenation programs.
Applying this strategy more broadly could uncover additional effectors that, alone or in
combination, recapitulate a fuller spectrum of OSK’s benefits while bypassing the safety concerns.
Ultimately, by dissecting and deploying stem-cell-intrinsic anti-aging pathways, we can open up
new avenues to harness early-life rejuvenation programs for combating late-life degeneration.

Limitation of this study:

While our work establishes a GSTA4-dependent oxidative resilience pathway downstream of OSK,
several limitations merit consideration. First, we confirmed OSK-GSTA4 mediated oxidative
protection in RPE and fibroblasts, but the extent to which this axis operates in other tissues, and
whether long term GSTA4 overexpression beginning from mid-age can lead to lifespan extension
remains to be tested. Second, OSK delivers broad oxidative resistance, whereas GSTA4 was
singled out for its potent protection against the mitochondrial toxin NalO3z; additional OSK-induced
effectors almost certainly contribute to its full protective spectrum. We believe the additional stress
resilience factors induced by OSK remain to be discovered, and the comprehensive
transcriptomic and ATAC-seq datasets generated in this study will allow further nominations.
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Figure 1. Assessment of OSK-mediated protection against oxidative stress and age-
related degeneration in the RPE.

(A) Representative RPE flatmounts from young and aged mice stained with CellRox and F-actin.
(B) Quantification of relative ROS intensity by immunofluorescence staining in RPE flatmounts
from young (3-month-old, 2M2F), middle-aged (14-month-old, 2M2F), and aged (24-month-old,
1M2F) mice (n = 3 eyes per group). One-way ANOVA-Bonferroni.

(C) Representative image of AAV-mediated OSK delivery to the subretinal space and transduction
of RPE cells. KLF4 (red) serves as a marker of OSK treatment, while F-actin (white) serves as a
marker of RPE cells. Scale bar, 50um.

(D) Quantification of visual acuity by optomotor response (OMR) in young (5M5F) and 12-month-
old mice at baseline and at 4 and 8 weeks following AAV-OSK injection (5M4F). One-way
ANOVA-Bonferroni.

(E) Schematic of cornea marking technique to identify the AAV injection site.

(F) Quantification of RPE pigmentation in 3- and 24-month-old mice following AAV-GFP or AAV-
OSK injection (n = 3 eye). Pigment area was calculated as the percentage of pigmented RPE
within the total imaged area using ImagedJ (40x magnification, NanoZoomer). Two-way ANOVA-
Bonferroni.
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(G) Toluidine blue—stained retinal sections and transmission electron microscopy (TEM) images
showing retinal ultrastructure in young (3mo.), aged, and OSK-treated aged (8 wks post AAV
injection at 24mo.) mice. Intracellular lipid droplets (LD), basal deposits (BD) are annotated. Scale
bar, 10 ym and 500 nm respectively. Retinal layers: INL, inner nuclear layer; ONL, outer nuclear
layer; IS, inner segment; OS, outer segment; RPE, retinal pigment epithelium. Mt, mitochondria;
M, melanin granule; N, nuclear; POS, photoreceptor outer segment; Bl, basal infoldings; BD,
basal deposit; BM, Bruch’s membrane.

(H) Quantification of multinucleated RPE cells in 24-month-old CFH-H/H mice administered
AAV2-tTA or AAV2-tTA/TRE-OSK 2 weeks ahead of switching to a high-fat, cholesterol-enriched
diet for 8 weeks. Multinucleation was defined as 23 nuclei per RPE cell (n = 5 eyes). Two-tailed
Student’s t-test. Data are mean + SEM.
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Figure S1. Assessment of the Benefits and Toxicity of AAV2-OSK in Aged RPEs.

(A) Quantification of visual acuity by optomotor response (OMR) in 3-month-old mice at baseline,
and in 12-month-old mice at baseline, and at 4 and 8 weeks following AAV-GFP injection (4M4F).
One-way ANOVA-Bonferroni.

(B) Representative high magnification TEM images of RPE mitochondrial cristae in young, old
and OSK-treated old eyes. Scale bar, 500nm.

(C) lllustration and quantification of defined cristae per mitochondria and mitochondria length in
the PRE of young, old and OSK-treated old eyes.

(D) Immunofluorescence images of RPE flatmount showing RPE cells in 24-month-old CFH-H/H
mice maintained on a high-fat, cholesterol-enriched (HFC) diet and treated with AAV-OSK.
Multinucleation was defined as =3 nuclei per RPE cell.

(E) Left: Schematic diagram of mouse retinal subregions. The retina is divided into distinct regions
based on radial distance and orientation from the center of the optic nerve head (ONH). Right:
Optical coherence tomography (OCT) results showing total retinal thickness and thickness of
outer nuclear layer (ONL) in AAV-GFP and AAV-OSK treated eyes (n = 4 eyes per group, equal
sex). Two-way ANOVA-Bonferroni.

(F) Electroretinogram (ERG) results showing b-wave responses in aged mice at 8 weeks post-
OSK injection (Scotopic ERG at strength of 0.01, 0.1 and 1 cd.s/m?). Two-way ANOVA-Bonferroni.
(G) Transcriptomic age (tAge) of young (4 mo.) and old (17 mo.) mouse RPE cells, untreated and
with AAV-OSK treatment, as predicted by rodent multi-tissue transcriptomic clock of chronological
age.

(H) Standardized chronological tAge differences induced by AAV-OSK treatment in old mouse
RPE cells, according to module-specific multi-tissue chronological clocks. Red and blue bars
denote pro-aging and anti-aging transcriptomic changes, respectively.

Data are mean + SEM.
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Figure 2. OSK protects mitochondria against oxidative stress through a dynamic, Tet2-
independent mechanism.

(A) Schematic of the experimental timeline: matured ARPE-19 cells with doxycycline (DOX)-
inducible OSK or control ORFs (e.g., d2EGFP, NRF2) were exposed to oxidative stress (5 mM
NalOs) and assessed for survival by lactate dehydrogenase (LDH) release and cell replating
survival assays.

(B) Immunofluorescence images showing morphology of ARPE-19 cells post-maturation, with or
without OSK induction, stained for KLF4 (green), F-actin (magenta), and nuclei (DAPI, blue).
(C) Heatmap depicting ARPE-19 cell viability under oxidative stress mediated by different
stress-inducing conditions. Treatments included addition of either NalOs for 18 hrs, oxidized low
density lipoprotein (ox- LDL) for 24 hrs, cigarette smoke extract for 24 hrs, or tert-Butyl
hydroperoxide (tBH) for 4 hrs. Protection was determined by the mean percentage of OSK-
expressing cells surviving (+Dox induced OSK) versus the mean percentage of cells surviving
without OSK (-Dox) in the replating cell culture survival assay. LDH assays following either
NalOs3 treatment (LDH NalOs) or complement treatment (LDH complement) represent
cytotoxicity levels immediately following treatment (n = 5 in each group).
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(D) Immunofluorescence images of ROS intensity via DCF staining of ARPE-19 cells in normal
culture conditions or following treatment with 5mM NalOs for 6 hrs.

(E) Oxygen consumption rate (OCR) measured via Seahorse Mito Stress Test analysis in OSK-
induced and control cells with and without NalO3 treatment (n = 8 in each group).

(F) Quantification of mouse fibroblast cell survival with or without OSK induction under oxidative
stress conditions (20mM NalOs treatment for 18 hrs) using the replating cell culture survival
assay. Fibroblasts derived from OSK transgenic mice were treated with Doxycycline to induce
OSK expression in vitro (n = 8 cell lines, Y1-Y4, 3-month-old; O1-O4, 24-month-old). Two-way
ANOVA-Bonferroni.

(G) Quantification of ROS levels (CellROX) in mouse RPE cells, comparing OSK-expressing
and non-expressing RPE cells. Two-tailed Student’s t-test.

(H) Representative immunofluorescence image of mouse RPE flatmount from an aged mouse
that received a subretinal injection of AAV-OSK 4 weeks prior to recovery and staining for Klif4
(red), ROS (CellROX, green), and F-actin (phalloidin, white).

(I) Quantification of ARPE-19 cell survival in the replating cell culture survival assay following
Tet2 or control knockout, with (n = 5) or without (n = 4) OSK induction under NalOs induced
oxidative stress conditions. gTet2, CRISPR-Cas9 knockout of Tet2; gNT, non-targeting control.
Two-way ANOVA-Bonferroni.

(J) Quantification of ARPE-19 cell survival following NalOs treatment (5mM for 18 hrs). Negative
control with OSK off (OFF); positive control with OSK on (ON). RPE cells with OSK on for 4
days followed by withdrawal for 4 days (ON OFF, n = 5). One-way ANOVA-Bonferroni. Data are
mean + SEM.
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Figure S2. OSK protects RPE from NalOs-induced oxidative stress via a Tet2-independent
mechanism.

(A) Quantification of NalOs-induced cytotoxicity in matured ARPE-19 cells overexpressing GFP,
NRF2, or OSK, assessed by (left) LDH release assay and (right) replating survival assay (n=5
each group).

(B) Quantification of ARPE-19 cell survival rates following different mitochondrial inhibitor
treatments, with or without OSK induction under normal culture conditions (no NalOs3) or oxidative
stress conditions (+ NalOs). Oligomycin (blocks ATP production), BAM15 (stops ATP synthesis),
and Rot / AA (inhibits Complex | and Ill) (n = 3). Two-way ANOVA-Bonferroni.

(C) Representative brightfield images of mouse fibroblasts derived from OSK-transgenic mice,
treated with or without NalOs in the presence or absence of OSK induction. Scale bar, 200um.
(D) Immunoblot analysis of Tet2 protein levels in ARPE-19 cells that were CRISPR-edited to
knockout Tet2 with and without expression of OSK; gTet2, CRISPR-mediated knockout of Tet2;
gNT, non-targeting control. Scale bar, 400um.

(E) Representative brightfield images of NalO3 treated ARPE-19 cells that were CRISPR-edited
to knockout Tet2 with and without expression of OSK; non-targeting gRNA controls (gNT), Tet2
targeting gRNA (gTet2).

(F) gRT-PCR analysis of Tet2 relative expression in ARPE-19 cells. shTet2, transduction with a
short hairpin RNA targeting Tet2; shCtrl, transduction with a non-targeting control short hairpin
RNA (n = 2 per group). Two-tailed Student’s t-test.

(G) Quantification of cell survival in control (shCtrl) and Tet2-knockdown (shTet2) ARPE-19 cells
under NalOs induced oxidative stress conditions using the cell replating survival assay. The
survival of cells with OSK induction (OSK) is compared to control cells expressing GFP (n = 5).
Two-way ANOVA-Bonferroni.

(H) Schematic of the experimental timeline: matured ARPE-19 cells with doxycycline (DOX)-
inducible OSK were exposed to oxidative stress (5 mM NalOs) under different OSK induction
patterns and assessed for survival by lactate dehydrogenase (LDH) release and cell replating
assays.

(I) Representative brightfield images of ARPE-19 cell survival following NalOs treatment (5mM for
18 hrs). Negative control with OSK off (OFF); positive control with OSK on (ON). RPE cells with
OSK on for 4 days followed by withdrawal for 4 days (ON / OFF). Scale bar = 400 pm.

All data are presented as mean + SEM.
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Figure 3. Identification of GSTA4 as a necessary and sufficient OSK-downstream effector
responsible for oxidative resilience.

(A) Overview of transcriptomic datasets used to identify OSK-regulated gene unions in human
ARPE-19 cells (OSK vs GFP, 4 days), aged mouse RPE (AAV-OSK vs AAV-tTA, 5 weeks post
injection in 20-month-old mice), and mouse fibroblasts (young and aged, 8 cell lines, +OSK for 6
days).

(B) Volcano plots showing differentially expressed gene union 1 (DEGu1) induced by OSK
expression in aged mouse RPE cells and human ARPE-19 cell transcriptomic datasets.

(C) Scatter plot of the shared DEGs across two RPE systems (as in Figure 3B), mapped onto
the mouse fibroblast data. Each gene is positioned by its OSK-induced log, fold change (x-axis)
in fibroblast and its Pearson correlation (y-axis) between gene expression and NalOs protection
(as in Figure 2F). Gsta4 correlation figure is exemplified at the lower right corner, with —OSK
(black) and +OSK (blue) points illustrating its expression levels and oxidative protections. Shaded
regions indicate 95% confidence intervals around the linear regression line. Correlation figures of
additional candidates are displayed in Figure S3A.

(D) Heatmap depicting ARPE-19 cells mean viability following individual overexpression of
selected candidate ORFs in the context of oxidative stress.

(E) Immunofluorescence images of GSTA4 protein in ARPE-19 cells. Staining is shown for control
cells (-OSK), OSK-induced cells (+OSK), and cells with direct GSTA4 overexpression, stained for
GSTA4 (white), F-actin (magenta), KLF4(green) and nuclei (DAPI, blue).

21


https://doi.org/10.1101/2025.08.30.673239

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.30.673239; this version posted September 1, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(F) Oxygen consumption rate (OCR) measured via Seahorse analysis in GSTA4-induced and
control cells (GFP) before and after NalOs; treatment.

(G) Schematic of the inducible OSK overexpression and CRISPR-Cas9 system used to disrupt
GSTA4 expression.

(H) Immunoblot analysis of GSTA4 protein level under OSK induction in CRISPR-mediated
knockout ARPE-19 cells.

() Quantification of ARPE-19 cells survival following CRISPR-Cas9 knockout of GSTA4
compared to controls (QOR1F1), with (n = 5) or without (n = 4) OSK induction under oxidative
stress conditions. Two-way ANOVA-Bonferroni.

(J) Gene set enrichment analysis (GSEA) of transcriptomic data following OSK expression,
highlighting oxidative phosphorylation, fatty acid metabolism, and epithelial-mesenchymal
transition—related gene signatures. All data are presented as mean + SEM.
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Figure S3. GSTAA4 is required for OSK-induced oxidative resilience, and its
overexpression partially mimics the transcriptomic effects of OSK.

(A) Scatter plots of six other candidate effectors (Left to Right, Top to Bottom: Aldh3a1, Pipox,
Ccdc3, Nrarp, Phyhip, Carns1) showing how their mRNA expression correlates with protection
(%) against NalOs-induced oxidative stress in mouse fibroblast cells. Black and blue dots
represent candidate normalized gene expression without (—OSK) or with (+OSK) induction
respectively; solid lines are linear regressions with displayed R? and P values. Shaded regions
indicate 95% confidence intervals around the regression line.

(B) Representative brightfield images of ARPE-19 stable cell lines with lentiviral integration of
inducible GFP or inducible GSTA4, treated with NalO; in the presence or absence of DOX
induction. Scale bar, 400um.

(C) Representative brightfield images of ARPE-19 cells following CRISPR-Cas9 knockout of
GSTA4 (gGSTA4) compared to controls (QOR1F1), treated with NalOs in the presence or absence
of OSK induction. Scale bar, 400um.

(D) Gene set enrichment analysis (GSEA) of transcriptomic data from wild type (WT), GFP, OSK,
and GSTA4 overexpressing cells (n = 3 per group).
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Figure 4. GSTA4 is a direct and dynamic target of OSK factors and is essential for stem
cell function.

(A) Heatmap showing induction of candidate oxidative effectors upon ectopic expression of Oct4,
Sox2, KIf4 or OSK in ARPE-19 cells.

(B) Stem cell growth impact of sgRNAs targeting candidate genes using CRISPR interference
(CRISPRi)-mediated knockdown in human embryonic stem cells, represented as the average
Log, fold change (Day 10/Day 0) in WTC11 and H1 hESC lines.

(C) Chromatin accessibility and UniBind-based transcription factor binding profiles for Oct4, Sox2,
and KIf4 at the Gsta4 locus under continuous or transient OSK expression, with H3K4me3 ChlP-
seq serving as a promoter mark and CAGE-seq indicating the transcription start site. Unibind
ChiP-validated TF binding sites obtained from mouse embryonic stem cells (ESCs) and mouse
embryonic fibroblasts (EmFib). +6, OSK induced with Doxycycline for 6 days; +6-4, OSK induced
with doxycycline for 4 days, then withdrawn for 4 days; -, no OSK induction.

(D and E) mRNA transcript levels of GSTA4 and Gsta4 under continuous or transient OSK
expression in human RPE (D) and in mouse fibroblasts (E). Two-way ANOVA-Bonferroni (n = 4
per group). +4, OSK induced with doxycycline for 4 days; +4-4, OSK induced with doxycycline for
4 days, then withdrawn for 4 days; -, no OSK induction.

(F) TF binding score figure: Top tracks: Unibind ChIP-validated TF binding sites obtained from
mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Overlapping sites
are merged. Bottom heatmap: seq2PRINT-inferred TF binding scores within the Gsta4 promoter
region at chr9:78191690-78192490. Columns represent single base pair positions, and rows
represent individual samples.

All data are presented as mean + SEM.
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Figure S4. GSTA4, OCT4 and SOX2 are downregulated concurrently with mesoderm
specification in early gastrulation.

(A) Uniform manifold approximation and projection (UMAP) plot of 116,312 cells from whole
mouse embryos spanning the E6.5-E8.5 stages of development. Cells are colored by their
developmental time point.

(B) Same as (A), but with cells colored by their cell-type annotation. The red highlighted region is
the focus of subsequent figure panels.

(C) (left to right) Average expression of Gsta4, Pou5f1, and Sox2 in each cell type included in the
highlighted region from (B). Orange, epiblast-stage cell types; light blue, early mesoderm cell
types.

(D) Gene expression distribution of Gsta4 across cells of the selected cell subset from the mouse
gastrulation dataset, with accompanying expression plots of Sox2 and Pou5f1 shown for
reference. Scatter plots of only the cells highlighted in (B), colored by (Upper left) cell-type
annotation, (upper right) Gsta4 expression, (lower left) Pou5f1 expression, (lower right) Sox2
expression in the UMAP space.

(E) Volcano plot showing the log2-transformed fold change expression (x-axis) and the negative
of log10 of adjusted p-value (y-axis) for all genes in the early mesoderm (orange in (C)) over the
epiblast (light blue in (C)) cell types. Red, significantly upregulated genes in the EMT hallmark
gene set; blue, significantly downregulated genes in the EMT hallmark set; black, EMT genes
without significant fold change; orange, Gsta4, Pou5f1, Sox2, Kif4; grey, not in the EMT set.
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Figure 5. AAV-GSTAA4 targets age-related 4-HNE accumulation and enhances visual
function and retinal electrophysiology in aged mice.

(A) Schematic of the experimental timeline for subretinal AAV injection and subsequent
measurements, including optomotor response (OMR), optical coherence tomography (OCT), and
multifocal electroretinography (mfERG) in 15-month-old mice.

(B) Quantification of visual acuity by OMR at baseline and at indicated time points following AAV
injection (GFP group, n =7, 4M3F; GSTA4 group, n = 6, 3M3F). The visual acuity examiner was
masked to the mouse treatment. Two-way ANOVA-Bonferroni. Representative before and after
optomotor recordings are provided in Supplemental Videos.

(C) Multifocal electroretinogram (MfERG) responses recorded in AAV-treated eyes at 8-weeks
post-AAV treatment (n = 6 in GFP group, n =5 in GSTA4 group with one failed to sleep). mfERG
testing uses a stimulus pattern across the retina made up of multiple hexagons, each with a
unique stimulus, allowing the system to determine the electrical response from specific areas of
the retina. Two-way ANOVA-Bonferroni.

(D) The three-dimensional plots depicting representative responses of GFP and GSTA4 groups
in mfERG, plotted by RMS Density x nV/deg? (nV per square degree). A higher score indicates
better retinal function.

(E) Scatter plots showing the correlation between chronological age and 4-HNE-protein
conjugates levels in the retina—RPE, normalized to actin. Shaded regions indicate 95%
confidence intervals around the linear regression line.

(F) Representative immunofluorescence image of RPE flatmounts from young (4-month-old) and
old (20-month-old) mice stained for 4-HNE-protein conjugates. Corresponding F-actin staining is
shown in Figure S5E). Scale bar, 1mm.

(G) Schematic of the experimental timeline for accessing GSTA-OE in alleviating 4-HNE and
ultrastructure dysfunction in aged retinas (24 mo.).

(H) Representative immunofluorescence image of RPE from 24-month-old mice, three weeks
after subretinal AAV-GSTA4 delivery, stained for 4-HNE (yellow), GSTA4 (purple) and F-actin
(phalloidin, white).

(I) Quantification of relative 4-HNE fluorescence intensity in GSTA4* and GSTA4~ cells across
eight sampled fields per group, from 24-month-old mice, three weeks after subretinal AAV-GSTA4
delivery. Two-tailed Student’s t-test.

(J) Transmission electron microscopy (TEM) images showing retinal ultrastructure in GFP-treated
young (5 mo.), GFP-treated aged, and GSTA4-treated aged mice (26 mo., 8 weeks post AAV-
GSTA4). Procedure follows demonstration in Figure 1E. Basal deposits (BD), and cytoplasmic
vacuolization (CV) are annotated. Scale bar, 10 pm and 500 nm respectively. Mt, mitochondria;
M, melanin granule; N, nuclear; POS, photoreceptor outer segment; Bl, basal infolding; BD, basal
deposit; BM, Bruch’s membrane.

All data are presented as mean + SEM.
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Figure S5. Histological analysis of aged eyes overexpressing GSTA4 demonstrates both
safety and efficacy.

(A) Comparison of fundus structure, total retinal thickness, and outer nuclear layer (ONL)
thickness between untreated (WT) eyes and AAV-treated eyes (GFP group and GSTA4 group)
(B) Regional comparison of total retinal thickness measured by OCT between AAV-GFP (n = 7)
and AAV-GSTA4 treated eyes (n = 5). Two-way ANOVA-Bonferroni.

(C) Electroretinogram (ERG) results showing b-wave responses in aged mice at 8 weeks post-
GSTA4 injection (GFP, n =4; GSTA4,n=7).

(D) Immunoblot analysis of 4-HNE protein conjugates in the mouse retina—RPE tissue lysate
across various ages. The major bands are similar in size to those observed in human vitreous
fluid’?. For total protein quantification, the density of each whole lane was measured in Fiji
software.

(E) Representative immunofluorescence image of RPE flatmounts from young (4-month-old) and
old (20-month-old) mice, stained for F-actin (phalloidin). Scale bar, 1 mm.

(F) Representative high magnification TEM images of RPE mitochondrial cristae in young, old
and GSTA4-treated old eyes. Scale bar, 500nm.

(G) Quantification of defined cristae per mitochondria and mitochondria length in the PRE of GFP-
treated young, GFP-treated or GSTA4-treated old eyes.

All data are presented as mean + SEM.
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Figure 6. GSTA4 overexpression in RPE restores youthful gene expression, links to
lifespan-extending treatments, and mediates GlyNAC’s protective effect.

(A) Transcriptomic age (tAge) of young (4 mo.) and old (17 mo.) mouse RPE cells, untreated and
with AAV-GSTA4 treatment, as predicted by multi-tissue transcriptomic clock of chronological age.
(B) Log2 fold change of gene expression in RPE aging and after AAV treatment.

(C) Spearman correlation heatmap comparing gene expression signatures of GSTA4 AAV,
mortality, aging (in RPE, brain, liver, kidney, and across tissues) and established lifespan-
extending interventions (growth hormone deficient models, caloric restriction, rapamycin, and
signature of maximum lifespan extended by various interventions). Each signature corresponds
to a vector of normalized enrichment scores (NES) derived from gene set enrichment analysis
(GSEA) using the HALLMARK, KEGG, and REACTOME ontologies. *** p.adj < 0.001; ** p.adj <
0.01; * p.adj < 0.05.

(D) Positive associations between hepatic expression change of Gsta4 and the effect of longevity
interventions on mouse expected maximum lifespan. Each dot corresponds to a single dataset
and represents the mean logFC of the gene in response to a particular treatment. Error bars are
standard errors (SE).

(E) Schematic showing GSTA4 as the key mediator of GlyNAC'’s cytoprotective effect.

(F) Quantification of glutathione levels in ARPE-19 cells following supplementation with 6mM
GlyNAC (Glycine and N-Acetyl-L-cysteine, n = 3 per group). Two-tailed Student’s t-test.

(G) Quantification of survival following NalO3 challenge in ARPE-19 cells with CRISPR-Cas9
knockout of GSTA4 (gGSTA4) compared to non-targeting controls (QNT), under no treatment (-)
or treatment with either 4 mM GlyNAC (Glycine and N-acetylcysteine), 6 mM GlyNAC or 6 mM
AlaNAAL (L-Alanine and N-Acetyl-L-alanine, n = 5 per group). Two-way ANOVA-Bonferroni. All
data are presented as mean + SEM.
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Figure S6. GSTA4 overexpression in RPE restores youthful gene expression, is linked to
lifespan-extending treatments, and mediates GlyNAC’s protective effect.

(A) Transcriptomic age (tAge) of young (4 mo.) and old (17 mo.) mouse RPE cells, untreated and
with AAV treatment, as predicted by multi-tissue transcriptomic clock of expected mortality.

(B) Standardized chronological tAge differences induced by AAV-GSTA4 treatment in old mouse
RPE cells, according to module-specific multi-tissue chronological clocks. Red and blue bars
denote pro-aging and anti-aging transcriptomic changes, respectively.

(C) Gene Set Enrichment Analysis (GSEA) results comparing the transcriptomic signatures of
GSTA4 AAV with previously identified signatures of mortality, aging, and established longevity
interventions. Each cell represents the Normalized Enrichment Score (NES), indicating the
degree of enrichment of a given pathway among up- or downregulated genes. HALLMARK,
KEGG, and REACTOME ontologies were utilized.

(D) Bar chart showing the standardized log fold change of Gsta4 expression in liver across various
established lifespan-extending interventions, identified through meta-analysis of transcriptomic
data.

(E) Volcano blot of genes based on normalized slope of association with maximum lifespan
extension in liver induced by longevity interventions.

(F) Representative brightfield images of ARPE-19 cells following CRISPR-Cas9 knockout of
GSTA4 compared to non-targeting controls (gNT), treated with NalOs under normal culture
conditions and with either 4 mM GIlyNAC, 6 mM GlyNAC or 6 mM AlaNAAL. Scale bar, 400um.
(G) Quantification of ARPE-19 cells numbers following CRISPR-Cas9 knockout of GSTA4
(gGSTA4) compared to non-targeting controls (gNT), under no treatment (-) or treatment with
either 4 mM GIyNAC (Glycine and N-acetylcysteine), 6 mM GlyNAC or 6 mM AlaNAAL (L-Alanine
and N-Acetyl-L-alanine), without oxidative stress conditions (n = 2 per group). Two-way ANOVA-
Bonferroni.

All data are presented as mean + SEM. *** p.adj < 0.001; ** p.adj < 0.01; * p.adj < 0.05; * p.adj
<0.1.
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Figure 7. The OSK-GSTA4 pathway exemplifies a dynamic, Tet2-independent stress-
resilience axis that can be harnessed to treat age-related diseases.

(A) Schematic highlighting the dual outcomes of OSK-mediated reprogramming. Partial
reprogramming with OSK is traditionally viewed as resetting the epigenetic clock via modifiers like
Tet2. We now show that in RPE cells and fibroblasts, OSK also dynamically up-regulate
stress-resilience factors, most notably the detoxifying enzyme GSTA4, through a Tet2-
independent manner, thereby strengthening cellular defenses.

(B) Schematic of OSK action in RPE cells. Transient expression of OSK engages a Tet2-
independent pathway that directly up-regulates the detoxifying enzyme GSTA4 without inducing
full epigenetic reprogramming. GSTA4, together with its co-substrate glutathione (GSH),
catalyzes conjugation and export of the lipid peroxidation product 4-HNE, thereby preserving
mitochondrial electron transport chain function under oxidative stress.

(C) In aged or injured retinas, elevated ROS and 4-HNE accumulation in the RPE (middle) disrupt
photoreceptor alignment and visual function. AAV-mediated delivery of GSTA4 restores RPE
mitochondrial health, clears 4-HNE, reverses age-associated transcriptional drift and rescues
retinal structure and vision (right), offering a more precise and safer strategy to treat RPE aging
and potentially AMD.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Data and materials availability

All six RNA-seq datasets and one ATAC-seq dataset generated in this study have been deposited
to GEO (GSE304044). Code used for analysis will be available at GitHub. Other data and material
generated are available from the corresponding authors upon request.

Mice

C57BL/6J wild-type mice were housed under 12-h light/dark cycles (6:00/18:00), at an ambient
temperature of 70-72 °F (21-22 °C) and 40-50% humidity. All animal procedures were reviewed
and approved by the Institutional Animal Care and Use Committees (IACUCs) at Schepens Eye
and Ear of Mass Eye and Ear according to appropriate animal welfare regulations. Young and old
males and females are obtained from NIA aged rodent colonies.

Animal Experimental Design

Animal group size was decided using standard deviation estimated from our previous work®'*, a
two-sided t-test G*Power calculation (alpha = 0.05 and 80% power), along with an 20% expected
injection failure. Equal numbers of male and female animals were budgeted prior to injection to
account for potential sex-dependent effects. Mice with intravitreal bleeding or signs of
inflammation (corneal clouding or edema) during or after subretinal injection were excluded based
on pre-established criteria. If all injections were successful, additional mice were retained for
functional assessments. The examiners of mouse experiments were masked to animal allocation
and outcome assessment.

Subretinal Delivery of AAV2

Subretinal delivery of AAV2 was performed exclusively in the right eye. Following anesthesia, the
pupil was dilated using one drop of tropicamide (1%) and phenylephrine (2.5%) ophthalmic
solution (PINE Pharmaceuticals, New York, United States). Once adequate dilation was achieved,
a 30-gauge needle was used to create a sclerotomy approximately 1 mm posterior to the limbus,
between the temporal and superior quadrants. GONAK hypromellose ophthalmic demulcent
solution (2.5%) (AKORN, lllinois, United States) was then applied to the corneal surface, and a 5
mm diameter circular contact lens (Warner Instruments, Connecticut, United States) was placed
to visualize the fundus under a surgical microscope. A 36-gauge blunt needle (World Precision
Instruments, Florida, United States), connected to a 10 uL sub-microliter injection system (World
Precision Instruments, Florida, United States), was inserted through the pre-made entry site and
guided into the subretinal space, specifically in the nasal-ventral region of the mid-peripheral
retina. A total volume of 1 pL of AAV2 (1e12 vg/mL) was delivered into the subretinal space.
Successful injection was confirmed by the formation of a visible retinal bleb. Following the
injection, residual hypromellose solution was gently removed using an eye spear. To prevent
postoperative infection, neomycin and polymyxin B sulfates with bacitracin zinc ophthalmic
ointment (Bausch + Lomb, Quebec, Canada) was applied around the injection site.

AMD CFH Mouse Model

CFH-H/H mice were generated and genotyped as described previously?®. CFH-H/H mice were
continued on a normal diet (Isopurina 5001; Prolab) and subretinally injected with AAV2-CMV-
tTA/TRE-OSK and AAV2-tTA at 120-wk-old. Two weeks post AAV injection, the mice were
switched to a HFC diet (TD 88051; Envigo) for 8 wk. All mice were housed conventionally in the
same mouse facility under ambient light conditions to control for environmental factors and
microbiome fluctuations. Mice were maintained in accordance with the Institutional Animal Care
and Use Committee at Duke University.
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Multinucleation Quantification

Mice were perfused with phosphate buffered saline (PBS) before eyes were enucleated. The
RPE/choroid/sclera were isolated and fixed overnight in methanol. RPE flatmounts were
immunostained with Phalloidin-647 (1:400, Cell Signalling #8940) and nuclei were labeled with
DAPI. Confocal images of the flatmounts were collected using Leica TCS SP8 Confocal
Microscope. The number of multinucleate RPE cells (=3 nuclei) per field of view was quantified
following the previous study by a masked grader.

Mice Anesthesia

Mice were anesthetized by intraperitoneal injection of a mixture of ketamine/xylazine (100-200
mg kg—1/20mgkg-1) supplemented by topical application of proparacaine to the ocular surface
(0.5%; Bausch & Lomb). For quicker recovery, mice were injected intraperitoneally with yohimbine
(2mg/kg) to counteract the anesthesia effects of xylazine, after the procedures.

Optomotor Response Assessment (OMR)

The visual acuity of mice was evaluated using an automated optomotor reflex-based spatial
frequency threshold test with the Optodrum (Striatech). The mice were positioned on a pedestal
in the center of an area surrounded by four computer monitors arranged in a quadrangle. These
monitors displayed a moving vertical black and white sinusoidal grating pattern. The software
captured the mice's outline, and nose and tail pointers were used to automatically assess their
tracking behavior. Tracking behavior was recorded solely when the mice were not moving. The
contrast level remained constant at 99.27%, and the rotation speed was set at 12° s-1. The cycle
per degree was adjusted using a preprogrammed staircase method. Final thresholds were
confirmed by requiring two positive responses, and three negative responses at the next higher
spatial frequency. The examiners were masked to group assignments throughout the assessment
period.

Optical Coherence Tomography (OCT)

OCT imaging was performed using a Bioptigen Envisu R-Class OCT system (Leica
Microsystems). Mice were anesthetized with a ketamine/xylazine cocktail (100—200/20 mg/kg),
and pupils were dilated with 1% tropicamide. Full retinal scans were acquired for all eyes using
Bioptigen InVivoVue™ 2.4 software, with the following parameters: 1.4 mm width, 1.4 mm length,
1.79 mm depth, 1000 A-scans per B-scan, 100 B-scans per volume, and 3 frames per B-scan.
OCT images were analyzed using Bioptigen InVivoVue Diver 3.4.4 software. Retinas were
automatically segmented with the integrated software, and results were reported as whole retinal
thickness (ILM to RPE) and outer nuclear layer (ONL) thickness.

Multifocal Electroretinography (mfERG)

MfERG is a highly localized and sensitive technique for detecting the function of specific areas of
the retina, making it particularly valuable when retinal functional improvements are confined to
localized regions "*. The mfERG methods used in this study have been previously described ™.
In brief, mMfERG tests were conducted using the Celeris pattern stimulator (Diagnosys LLC, Lowell,
MA, USA) with Diagnosys mfERG software (v3.8.1) and protocols. Following dark adaptation (=4
hours), experimental mice underwent pupil dilation (tropicamide 1%) for 15 minutes prior to
recording sessions. A 50-degree field of view of the mouse retina was tested using 7 hexagons,
each representing a multifocal display area. The pattern ERG stimulator was placed at the center
of the cornea, perpendicular to the corneal plane, for each test. Ocular lubrication was maintained
using preservative-free carbomer gel 0.18% (Genteal Severe Dry Eye Relief, Novartis Pharma
AG, Basel, Switzerland) between corneal surface and the stimulator probe.
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Transmission Electron Microscopy (TEM) Sample Preparation and Analysis

Mice were anesthetized with ketamine/xylazine (100 mg kg-1 and 20 mg kg-1). Live animals
were perfused via the aorta with 10 ml of sodium cacodylate buffer (0.1 M, pH 7.4) followed by 10
ml of 12 Karnovsky’s fixative in 0.1 M sodium cacodylate buffer (Electron Microscopy Sciences).
Eyes were enucleated and the anterior segment removed. The eye cups were post-fixed in 2%
osmium tetroxide, en bloc stained in 2% aqueous uruanyl acetate, dehydrated and embedded in
tEPON-812 epoxy resin. Semithin sections (1 ym) were stained with 1% toluidine blue in 1%
sodium tetraborate aqueous solution for light microscopy. Ultrathin sections (80 nm) were cut
from each sample block using a Leica EM UC7 ultramicrotome (Leica Microsystems) and stained
with 2% aqueous uranyl acetate and Sato’s lead citrate stains using a modified Hiraoka grid
staining system. Grids were imaged using an FEI Tecnai G2 Spirit transmission electron
microscope (Thermo Fisher at 80 kV interfaced with an AMT XR41 digital CCD camera (Advanced
Microscopy Techniques) for digital TIFF file image acquisition. TEM imaging of retina samples
was assessed, and digital images were captured at 2kx2k pixel, 16-bit resolution. Mitochondrial
quantification methods have been previously described ">7%. Briefly, TEM images taken at the
same magnification (18,500x) were analyzed using Fiji software. Each mitochondrion and cristae
were outlined and measured using the Free Selection tool, while mitochondrial area was
quantified using the embedded Region of Interest (ROI) Manager. The number of cristae per
mitochondrion was counted. Average measurements in each group were based on data from
more than 10 mitochondria across at least 10 cells.

Corneal Marking for Localization of Subretinal Injection Site in Histological Analysis

Following euthanasia via carbon dioxide inhalation and subsequent cervical dislocation, the nasal-
ventral region of the right cornea — approximately 1 mm anterior to the limbus — was cauterized
using a high-temperature cautery device with an elongated fine tip (Bovie Medical, Florida, United
States). This corneal marking served as a reference for orientation during histological processing.
Using curved micro scissors, a triangular notch was created at the marked region, enabling
consistent identification of the subretinal injection site. Following fixation, the posterior eye cup
was sagittally sectioned through the optic nerve between corneal markings, ensuring both the
AAV2-injected and uninjected regions were included within the same histological section.

Establishment of Stable ARPE-19 Cell Lines with Doxycycline-Inducible Expression
Doxycycline-inducible lentiviral constructs were generated using Gateway LR reactions between
pDonor-ORF and pLIX_403 (Addgene #41395). ARPE-19 cells were plated on Day 0 and infected
on Day 1 with lentivirus in the presence of 8 ug/mL polybrene. On Day 2, the medium was
replaced, and puromycin selection (4 ug/mL) was initiated on Day 4. Selection typically completed
by Day 8, as confirmed by complete cell death in uninfected control wells. Stable cells were
expanded from Day 9 onward, and plated into wells. Once confluent, cells were cultured in
nicotinamide-containing maturation medium for three weeks, with gene expression later induced
by 2 ug/mL doxycycline.

Fibroblast Isolation and Culture

Ear fibroblasts were isolated from Rosa26-M2rtTA/Col1a1-tetOP-OKS mice®*” and cultured at
37 °C in DMEM (Invitrogen) supplemented with non-essential amino acids, 10% tetracycline-free
fetal bovine serum (TaKaRa Bio, 631106), and 1% penicillin-streptomycin (ThermoFisher
Scientific, 15140122). Fibroblasts were expanded to passage 3 and induced with doxycycline
(2 pg/mL) for the indicated durations. All cell lines were confirmed to be mycoplasma-free.

Seahorse Mito Stress Test
ARPE-19 cells with doxycycline-inducible GFP, OSK, or GSTA4 expression were generated as
described above. Cells were plated at 2x10* cells/well in Agilent XFe96 microplates and incubated

41


https://doi.org/10.1101/2025.08.30.673239

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.30.673239; this version posted September 1, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

overnight at 37 °C, 5% CO,. After three weeks of maturation, doxycycline (2 ug/mL) was added
for 48 h, then cultures designated for stress were switched to maturation medium containing 5
mM NalOs for 24 h to induce mitochondrial oxidative injury. Bioenergetic function was then
assessed on the Seahorse XFe96 Analyzer (Agilent Technologies) by measuring real-time OCR
and ECAR. Prior to running the assays, the maturation medium was replaced with the assay
medium (Seahorse XF Base Medium without Phenol Red, Agilent) supplemented with 2 mM
GlutaMAX (ThermoFisher), 1 mM sodium pyruvate (Gibco, Carlsbad, CA, USA), and 25 mM D-
glucose (Sigma, St. Louis, MO, USA), adjusted to pH 7.4. Cells were incubated for 1 h in a CO,-
free 37°C incubator to equilibrate the medium. For the Mito Stress Test, sequential injections of
mitochondrial modulators were performed at the following final concentrations: oligomycin (2.5
uM) to inhibit ATP synthase, BAM15 (10 uM) as an uncoupler to assess maximal respiration, and
a combination of rotenone and antimycin A (both at 2 pyM) to inhibit Complexes | and Il
respectively. Upon completion of the assays, cells were lysed in ice-cold 1x Cell Lysis Buffer (Cell
Signaling Technology, Beverly, MA, USA) supplemented with 1 mM PMSF (Sigma, St. Louis, MO,
USA) and stored at -80°C. Protein concentrations were determined using the Pierce BCA Assay
Kit (ThermoFisher, Waltham, MA, USA). All metabolic parameters were normalized to the protein
content of each well, and data analysis was conducted using the XF Wave software (Agilent
Technologies) and exported to GraphPad Prism for statistical analysis.

CRISPR Knockout

Dual guide RNAs targeting exons of genes of interest were picked from human Brunello library ”’
(displayed below) and cloned into the lentiCRISPRv2-Opti vector via Golden Gate assembly
(NEBridge® Golden Gate Assembly Kit, BsmBI-v2), following the manufacturer's instructions.
Constructed plasmids were transformed into NEB Stable Competent E. coli. Single clones were
picked, cultured, and plasmids were isolated via miniprep for sequencing confirmation. For
lentivirus production, HEK293T cells were co-transfected with the sequence-verified transfer
vector (2 ug) and packaging plasmids pMDL (1.3 ug), pRSV-Rev (0.5 pg) and pMD2.G (VSVG,
0.7 pg) using TransIT transfection reagent. The medium was replaced the next day with
ViralBoost Reagent. Viral supernatants were harvested at 48 hours post-transfection, centrifuged
at 500g for 5 minutes to remove cell debris and stored at -80°C until use. Target cells were seeded
at 2x10° cells per well in 6-well plates 48 hours prior to transduction. For transduction, cells were
incubated with 1mL viral supernatant, 8ug/mL polybrene and 1 mL culture medium. The medium
was replaced with fresh medium the following day. The transduced cells were passaged into
medium containing 4ug/mL puromycin approximately 96 hours post-transduction and selection
was maintained for 5 days. Untransduced cells were treated with puromycin as a selection control,
and their death confirmed puromycin effectiveness.

Guide 1 Guide 2

Non-targeting (NT) [ GTTTTTAATACAAGGTAATCT GTGACTAGCTCTTACATATTC

Tet2 GTCTGCCCTGAGGTATGCGAT | GTTCCAAAAACCCTCACACC
OR1F1 GAGGTCATAATCCTTAGTGA GCCATAATCCAGCAACCAGCA
GSTA4 GAGACCTGGAGTCCACTCGG GTAAGGTACCTCGACTCCGG

Replate and Counting

For ORF induction, matured ARPE-19 cells (three weeks in maturation medium) were initially
cultured in maturation medium with 2 pg/mL doxycycline for three additional days. Then the cells
were switched to starvation medium containing 2 ug/mL doxycycline for an additional day before
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being treated with different oxidative damage protocols in starvation medium. For each group,
one well was left without oxidative damage treatment as a control for counting normalization
purposes. Bright field pictures were taken using Incucyte. For LDH assay, 40 pL of cell
supernatant was collected and LDH assay reagent was added to the supernatant, followed by
incubation at room temperature for 30 minutes under light-protected conditions. The absorbance
at 492 nm was measured using a microplate reader after adding LDH assay stop solution. Normal
cells treated with lysis solution were used to obtain the maximum LDH release. For replating
survival flow count, cells were trypsinized and replated onto a new plate in growth medium and
incubated for 1 day. Bright field pictures were taken after washing cells with PBS to remove
unattached cells and debris. The harvested cells were then resuspended with 110 uL PBS
supplemented with 5% FBS. Samples were analyzed using an Attune Flow Cytometer and a
volume of 70 uL per sample was collected.

RPE Flatmount and Immunofluorescence

Mouse eyes were enucleated and fixed in 4% paraformaldehyde (PFA) at 4 °C overnight. After
removing the anterior segment, the neuroretina was gently peeled away from the underlying
RPE—choroid cup, which was then radial-cut 7-8 times to generate an RPE flatmount. RPE
flatmounts were blocked with BlockAid Blocking solution (Thermo) with 0.1% Triton X-100 for one
hour. Then flatmounts were stained overnight with primary antibodies at 4 °C and then secondary
antibodies at room temperature for 2 h. Between changes of solutions, all flatmounts were washed
3 times, for 5 min each time. Antibodies used were as follows: goat anti-KLF4 (R&D systems,
AF3158), mouse anti-4-HNE (JalCA, MHN-020P), rabbit anti-GSTA4 (Proteintech, 17271-1-AP)
and Phalloidin-647 (Thermo, A22287) for F-actin. RPE Flatmounts were mounted with
Vectashield Antifade Mounting Medium. KLF4 and GSTA4 antibodies were validated using
overexpression cell lines, while the 4-HNE antibody was validated by signal reduction upon
GSTA4 overexpression in aged mouse RPEs.

RPE Flatmount ROS Staining

Retinas were isolated for a whole-mount preparation in cold PBS. Fresh isolated retinas were
immersed in a 5-uM concentration of the CellROX Green Reagent (Life Technologies, Rockuville,
MD, USA) at 4°C for 45 minutes with agitation. After washing with PBS, retinas were fixed with
PFA.

Immunofluorescence Quantification

Immunofluorescence images were acquired using the Leica TCS SP8 confocal microscope (Leica
Microsystems). Fluorescence intensity was quantified using ImageJ software. All fluorescence
images were processed as 8-bit images in Imaged to facilitate accurate intensity quantification.
The mean gray value of CellROS or 4-HNE staining was measured within predefined regions of
interest (ROIs), which were defined using a polygon selection tool in Imaged. These ROls
corresponded to areas of retinal pigment epithelium (RPE) identified by F-actin staining. OSK-
and OSK+ cells were distinguished based on KiIf4 staining, while GSTA4- and GSTA4+ cells were
identified by GSTA4 staining.

RPE Pigment Area (%) Quantification

Tissue sections were scanned using a NanoZoomer. After exporting images at 2.5x magnification
using NDP.view2, two images at 40x magnification (1432 x 1248 pixels, corresponding to 314.0
x 273.7 ym) were selected from positions approximately 1 mm from the left and right ciliary body,
with the left image representing the uninjected site and the right image representing the injected
site. Quantification was performed using Imaged 1.54g / Java 1.8.0_345 (64-bit). Polygon
selections were employed to outline the retinal pigment epithelium (RPE) area, while freehand
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selections were used to delineate the pigment area. The percentage of RPE pigment area (%)
was calculated by dividing the pigment area by the total RPE area.

ATAC-seq Library Preparation and Sequencing

ATAC-seq libraries were prepared using a modified bulk protocol. Briefly, cells were incubated
with custom-loaded Tn5 transposase in high-salt transposition buffer for 30 minutes at 37 °C with
agitation. Transposed DNA was purified using the Zymo DNA Clean & Concentrator kit. Libraries
were pre-amplified for 5 cycles, then subjected to qPCR to determine the additional number of
cycles needed, minimizing amplification bias. Final libraries were purified, quality-checked by gel
electrophoresis, and quantified. Sequencing was performed on an lllumina platform using paired-
end reads, targeting ~20 million reads per sample.

ATAC-seq and seq2PRINT Analysis

ATAC-seq data was aligned to the mm10 genome using bowtie2, and duplicate reads were
removed using Picard MarkDuplicates. Aligned data was processed using samtools and
converted to fragments files with bedtools bamtobed. To visualize the ATAC-seqg-based
accessibility tracks across conditions, Tn5 insertion was mapped at single base-pair resolutions,
normalized by the total sequencing depth of each sample, and then smoothed with a 250 bp
running-mean window. High confidence TF binding site annotations were obtained from Unibind
(https://unibind.uio.no/)"®. seq2PRINT %2 was used to infer TF binding patterns in individual bulk-
ATAC samples. A separate seq2PRINT model was trained for each sample to calculate TF
binding scores.

Mouse RPE Isolation

Eyes were enucleated and placed in cold PBS on ice. The anterior segment was removed, and
retinas were either collected separately and snap-frozen or discarded. The posterior eyecup was
briefly rinsed in cold PBS, then transferred into 200 uL RNAprotect Cell Reagent (Qiagen) and
incubated at room temperature for 10—-30 minutes. Tubes were agitated to release RPE cells, and
the remaining eyecup was removed. RPE cells were pelleted by centrifugation (2,500 rpm, 5 min,
RT), resuspended in 200 uL TRIzol, and flash-frozen on dry ice. RPE purity was confirmed by
RNA-seq, showing high expression of Rpe65and low expression of Cx3cr1 (microglia
marker), Cdh5 (endothelial marker), and Rho (photoreceptor marker).

RNA-seq Library Preparation and Paired-End Sequencing

Total RNA was extracted using TRIzol Reagent (Thermo Fisher) with 1 yL glycogen (10 mg/mL)
added to enhance yield. RNA quantity and integrity were assessed using a Qubit 3.0 Fluorometer
(Life Technologies) and Agilent TapeStation, respectively. RNA-seq libraries were prepared at
Genewiz using the SMART-Seq v4 Ultra Low Input Kit (Clontech) for full-length cDNA synthesis
and Nextera XT (lllumina) for library construction. Libraries were indexed via limited-cycle PCR,
and quality was confirmed by Qubit and TapeStation. Libraries were multiplexed and clustered on
two lanes of an lllumina HiSeq flow cell and sequenced using a 2x150 bp paired-end
configuration. Image analysis and base calling were performed using HiSeq Control Software,
and raw BCL files were converted to FASTQ and demultiplexed using bcl2fastq v2.17, allowing
one mismatch for index identification.

RNA-seq Analysis

Paired-end human and mouse reads were mapped to the canonical chromosomes of the
GRCh38/hg38 or GRCm38/mm10 genome genomes, respectively, with STAR (v 2.7.1a)"® using
a genome index created using Ensembl 96 gene models (with sjdbOverhang=100). Gene counts
were obtained for all genes using featureCounts (v1.6.2)% and the same GTF file as for STAR
and options "-p -s 1". Differential expression analysis was performed in R (v 3.6.3) using DESeq2
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(v 1.26.0) 8 with 'independentFiltering=FALSE' and 'normal' IfcShrink. Human and mouse
expression changes were linked using gene orthologs obtained from Ensembl 11082,

Differential Expression Analysis

Differential expression analysis was performed using DESeq2 with raw RNA counts as input. To
calculate the correlation between gene expression and cell survival, raw RNA counts were
normalized per sample using the size factor estimated by DESeqg2. Log2 fold changes were also
estimated using DESeq2.

To calculate the pathway-by-sample gene expression matrix, raw RNA counts were first
normalized per sample using the size factor estimated by DESeq2, and then rescaled per gene.
The mean scaled expression value of genes in the same pathway was used as the pathway
expression score.

ScRNA-seq Analysis

The mouse gastrulation scRNA-seq dataset was obtained from the Pijuan-Sala, Griffiths &
Guibentif et al. 2019 study®, as indicated following the instructions at
https://github.com/MarioniLab/EmbryoTimecourse2018 .Cell-type labels provided in the original
data object were retained. For Figure. S4, the data were subset to cell types “Epiblast”, “Primitive
Streak”, “Nascent mesoderm”, “Mixed mesoderm” and “PGC”. The arithmetic mean was used to
compute average expression values in each cell type. For Figure. S4E, library sizes were
normalized to 10 000 transcripts per cell followed by natural-log transformation with a +1
pseudocount. A subset of genes expressed in 2200 cells was kept. Pairwise differential
expression between the epiblast cell types (Epiblast, Primitive Streak) and early mesoderm cell
types (Nascent mesoderm, Mixed mesoderm, PGC) was performed with a Wilcoxon rank-sum
statistic, with p-values adjusted using the Benjamini-Hochberg false discovery rate (FDR-BH)
procedure. Gene sets were fetched through GSEApy v1.1.8%% using the Enrichr interface,
focusing on the Hallmark 2020 — “Epithelial-Mesenchymal Transition” (EMT) set®*. Genes with
[log,FC| > 1 and padj < 0.05 were colored as Up- or Down-regulated (depending on the sign of
the fold change) and visualized using a volcano plot, with a y-axis of —log;, padj plotted against
log,FC and colored as described in Figure. S4E.

Transcriptomic Clock Analysis

Before applying transcriptomic clocks, RPE mouse RNA-seq data underwent filtering and
normalization. Genes with fewer than 10 reads in more than 80% of samples were excluded. The
filtered data were then processed with Relative Log Expression (RLE) normalization, log-
transformation, and YuGene transformation®. Missing expression values for clock genes not
detected in the dataset were imputed using their corresponding precomputed average values.
Normalized gene expression profiles were centered to the median profile of old control samples.
Transcriptomic age (tAge) for each sample was estimated using Bayesian Ridge multi-tissue
transcriptomic clocks of chronological age and expected mortality®'. Differences in mean tAge
between young and old controls, as well as between old controls and age-matched Gsta4- or
OSK-overexpressing samples, were evaluated using a mixed-effects ANOVA model implemented
via the rma.uni function from the metafor package in R. Module-specific transcriptomic clocks of
chronological age were applied to scaled relative gene expression profiles using the same
framework. For each module, tAges were standardized across samples, and then differences in
average standardized tAge between old control and treated groups were assessed with ANOVA.
Resulting p-values were adjusted for multiple testing using the Benjamini-Hochberg method .
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Transcriptomic Signature Analysis

To assess association between transcriptomic changes induced by Gsta4 overexpression in RPE
cells and signatures of aging, mortality, and lifespan-extending interventions, we performed
functional enrichment analysis. The reference signatures included tissue-specific transcriptomic
profiles of aging in kidney, liver, and brain, as well as multi-tissue signatures of aging and
expected mortality adjusted for chronological age®'®. Additionally, we incorporated established
hepatic expression signatures of longevity interventions in mice, including those associated with
growth hormone deficiency, caloric restriction, and rapamycin, as well as a composite biomarker
of maximal lifespan extension derived across dozens of interventions®’.

For the identification of functional changes induced by aging and Gsta4 overexpression in RPE,
we first conducted differential expression analysis using edgeR, comparing (1) young versus old
control RPE samples, and (2) old GFP-induced versus old Gsta4-induced RPE samples. Genes
were ranked based on a signed log-transformed p-value: -log(pv)xsgn(lfc), where pv and Ifc are
p-value and logFC of a certain gene, respectively, and sgn is the signum function (equal to 1, -1
and O if value is positive, negative or equal to 0, respectively).

Gene set enrichment analysis (GSEA) was then performed on these pre-ranked gene lists using
the fgsea package in R (10,000 permutations, multilevel Monte Carlo sampling). Gene sets were
derived from the HALLMARK, KEGG, and REACTOME collections in the Molecular Signatures
Database (MSigDB). P-values were adjusted for multiple testing using the Benjamini—-Hochberg
method, and an adjusted p-value < 0.05 was considered statistically significant.

Similarly, GSEA was performed for reference signatures of aging, mortality, and longevity
interventions. Enrichment profiles were compared to those observed during RPE aging and in the
Gsta4-overexpressing RPE using Spearman correlation of normalized enrichment scores (NES).
Association of Gsta4 liver expression change (logFC) across various interventions and its
association with intervention effect on mouse lifespan was examined with the mSALT database
(https://gladyshevlab.org/mSALTY/).
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