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SUMMARY
Antibody transfer via breastmilk represents an evolutionary strategy to boost immunity in early life. Although
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies have been observed in
the breastmilk, the functional quality of these antibodies remains unclear. Here, we apply systems serology to
characterize SARS-CoV-2-specific antibodies in maternal serum and breastmilk to compare the functional
characteristics of antibodies in these fluids. Distinct SARS-CoV-2-specific antibody responses are observed
in the serum and breastmilk of lactating individuals previously infected with SARS-CoV-2, with a more domi-
nant transfer of immunoglobulin A (IgA) and IgM into breastmilk. Although IgGs are present in breastmilk, they
are functionally attenuated. We observe preferential transfer of antibodies capable of eliciting neutrophil
phagocytosis and neutralization compared to other functions, pointing to selective transfer of certain func-
tional antibodies to breastmilk. These data highlight the preferential transfer of SARS-CoV-2-specific IgA and
IgM to breastmilk, accompanied by select IgG subpopulations, positioned to create a non-pathologic but
protective barrier against coronavirus disease 2019 (COVID-19).
INTRODUCTION

The rapid spread of severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) has resulted in millions of deaths and hun-

dreds of millions of hospitalizations (CDC, 2021). Certain popula-

tions exhibit a higher risk of developing severe disease, including

individuals with pre-existing heart, respiratory, metabolic, and

autoimmune conditions (Ssentongo et al., 2020; Zhou et al.,

2020). Although children have been less widely impacted than

adults by coronavirus disease 2019 (COVID-19) (Ludvigsson,

2020; Zimmermann and Curtis, 2020a, 2020b), infants and neo-

nates are the most at-risk pediatric group. While hospitalization

numbers of SARS-CoV-2 infants may be inflated because infants

are often hospitalized to rule out sepsis (Hassan et al., 2021; Zeng

et al., 2020), neonates and infants may also be more prone to se-

vere disease upon infection with SARS-CoV-2 compared to older

pediatric populations (Dong et al., 2020; Kim et al., 2020; Preston
This is an open access article und
et al., 2021). This bimodal distribution of severity, with intense sus-

ceptibility in early life and then again in older adulthood, resembles

that seen in other respiratory diseases, like influenza and tubercu-

losis (Clohisey and Baillie, 2019; Nair et al., 2011; Schaaf et al.,

2010; Shingadia and Novelli, 2003). Even if the specific mecha-

nisms that underlie this age-dependent change in respiratory

pathogen susceptibility remain unclear, the early-life predisposi-

tion to severe respiratory disease points to the urgent need to

develop vaccines able to rapidly drive immunity in infants.

Evolutionarily, infants receive passive immunity through the

transfer of systemic antibodies via the placenta and mucosal an-

tibodies via breastmilk (Atyeo and Alter, 2021; Langel et al., 2020).

Systemic antibodies are thought to confer protection for 3–

9months (Kiliç et al., 2003; Leuridan and Van Damme, 2007; Leur-

idan et al., 2011; Ochola et al., 2009; Schlaudecker et al., 2013;

Watanaveeradej et al., 2003), until the infant is able to mount an

active immune response. Breastmilk antibodies are derived
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Table 1. Demographics of cases and controls

COVID negative

(n = 26)a
COVID positive

(n = 20)b

Maternal age (median, IQR) 33 (31, 38) 32 (27, 36)

Race

Black 2 (8%) 3 (15%)

White 18 (69%) 15 (75%)

Other 6 (23%) 2 (10%)

Ethnicity

Hispanic or Latino 4 (15%) 5 (25%)

Neonatal sex

Female 13 (50%) 10 (50%)

COVID severityc

Asymptomatic/mild – 10 (50%)

Moderate/severe/critical – 10 (50%)

Time from positive test to

serum sample collection

(median, IQR)

– 66 (11.5–99.5)

Time from symptom onset

to breastmilk collection

(median, IQR)

78 (15,123)

an = 26 SARS-CoV-2 negative at delivery, never + for SARS-CoV-2 in

pregnancy, and no symptoms.
bn = 20 SARS-CoV-2 positive in pregnancy. No neonates tested positive

for SARS-CoV-2 by nasopharyngeal swab at delivery.
cCOVID severity determined per NIH criteria
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primarily from B cells primed in the mucosa, resulting in high con-

centrations of secretory antibodies that offer a prolonged period

of immune transfer to confer immunity against mucosal patho-

gens. Breastfeeding offers protection against several enteric

and respiratory infections, including protection from Shigella (Du-

rand et al., 2013), influenza (Husseini et al., 1984; Schlaudecker

et al., 2013), respiratory syncytial virus (Bulkowet al., 2002; Down-

hamet al., 1976), and HIV (Fouda et al., 2011;Mabuka et al., 2012;

Pollara et al., 2015). Moreover, recent data also suggest that

SARS-CoV-2-specific antibodies are transferred via breastmilk

to infants, potentially providing an early source of immunity to pro-

tect the infant from infection or disease (Fox et al., 2020; Pace

et al., 2020). However, the precise levels and quality of the anti-

bodies transferred is less well understood.

Breastmilk is a complex mixture rich in nutrients, cytokines,

cells, and antibodies (Andreas et al., 2015; Casey et al., 1986;

Lyons et al., 2020). Immunoglobulin A (IgA) is the dominant anti-

body transferred to infants via breastmilk, thought to play a critical

role in mucosal defense by supporting commensalization (Palm

et al., 2014; Rogier et al., 2014) and excluding pathogens (Binsker

et al., 2020; Harris et al., 2006). However,mountingdata across in-

fectious pathogens suggest that additional antibody subpopula-

tions, including IgG, are also transferred across the breastmilk,

contributing to immune protection (Andreas et al., 2015; Cabal-

lero-Flores et al., 2019;Kochet al., 2016).Whether all antibody iso-

types and subclasses transfer equally or whether preferential

transfer of IgG, IgA, andother antibodies intobreastmilkoccurs re-

mains incompletely understood but could provide critical insights
2 Cell Reports 37, 109959, November 9, 2021
for rational vaccine and monoclonal therapeutic design in the

future to improve delivery of antibodies to neonates via breastmilk.

Thus, to better understand themechanismof antibody transfer

to breastmilk, particularly in the setting of SARS-CoV-2 infection,

we used systems serology to profile antibody Fc characteristics

of SARS-CoV-2-specific responses in a cohort of 45 matched

maternal serum-breastmilk dyads (19 SARS-CoV-2 + and 26

SARS-CoV-2 �). A clear anti-SARS-CoV-2 response was de-

tected in the serum and breastmilk of SARS-CoV-2-infected

mothers compared to uninfected mothers, marked by a domi-

nant IgA and IgM response in breast milk and an IgG response

in serum. Whereas a polyfunctional anti-spike response was de-

tected in serum, more limited antibody functionality was trans-

ferred to the breastmilk. These results confirm preferential trans-

fer of spike-specific secretory IgA and IgM into the breastmilk

and the presence of functionally selected IgG antibodies into

the breastmilk upon SARS-CoV-2 infection, potentially as a

mechanism to promote the transfer of protective but non-inflam-

matory antibodies into the newborn.

RESULTS

SARS-CoV-2 infection in pregnancy is associated with a
distinct serum and breastmilk antibody response
Recent studies have demonstrated the transfer of SARS-CoV-2-

specific neutralizing antibodies in breastmilk following SARS-

CoV-2 infection (Fox et al., 2020; Pace et al., 2020). However,

beyond binding and blocking the virus, emerging data point to

a critical role for extra-neutralizing Fc-effector functions in reso-

lution of infection and disease (Excler et al., 2014; Lu et al., 2018).

Previous studies clearly illustrated the evolution and transfer of

Fc-effector function in pregnant women via placenta to their in-

fants, but less is known about the transfer of Fc-effector function

across breastmilk. To better understand the Fc transfer profile of

SARS-CoV-2-specific antibodies to the breastmilk, we used sys-

tems serology on samples from a cohort of 45matchedmaternal

serum-breastmilk dyads (Table 1). Systems serology profiling re-

vealed that each woman possessed a unique SARS-CoV-2-spe-

cific antibody profile, with distinct signatures characterizing the

serum and milk (Figures 1A and 1B). As expected, mothers in-

fected with SARS-CoV-2 possessed SARS-CoV-2-specific anti-

bodies in serum and breastmilk that were not present in SARS-

CoV-2-uninfected specimens (Figures 1C and 1D). Univariate

analysis demonstrated that, while SARS-CoV-2-specific anti-

body titers were observed across both compartments in

COVID+ samples compared to COVID� samples, the levels of

all isotypeswere persistently lower in breastmilk than serum (Fig-

ures 1C–1E, S1, and S2). To further define whether particular

antibody subpopulations were transferred preferentially into

breastmilk, a transfer ratio was calculated for each isotype and

Fc-receptor binding feature (Figure 1C). We observed robust

transfer of IgA and IgM in breastmilk, with more limited IgG1

transfer (Figure 1C). Although the placenta preferentially trans-

fers Fc-receptor (FcR) binding antibodies, at the level of the

breast, we observed limited IgG and IgG-binding Fcg-receptor

(FcgR) transfer but robust IgM, IgA,and IgA-binding FcR (FcaR)

transfer, supporting preferential transfer of IgA and IgM in

breastmilk following SARS-CoV-2 infection in pregnant women.



A B E

C

D

Figure 1. SARS-CoV-2-infected women induce an antibody response in serum and breastmilk

(A and B) The heatmaps summarize the antibody isotypes and FcR-binding signatures against SARS-CoV-2 in serum (A) and breastmilk (B) for SARS-CoV-2

uninfected (top) and infected (bottom) women. The color scale corresponds with the Z score for each antibody titer measured, with lighter coloration representing

a positive Z score and darker coloration representing a negative Z score. The data represent the average of two replicates.

(C) The dot plots show the IgG1, IgA1, and IgM titers and FcgR2a, FcgR3a, and FcaR binding against SARS-CoV-2 spike in the serum of SARS-CoV-2-infected

(left, dark teal) and uninfected (right, light teal) mothers. Significance was determined byMann-Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

The data represent the average of two replicates.

(D) The dot plots show the IgG1, IgA1, and IgM titers and FcgR2a, FcgR3a, and FcaR binding against SARS-CoV-2 spike in the breastmilk from SARS-CoV-2-

infected (left, dark purple) and uninfected (right, light purple) mothers. Significance was determined by Mann-Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001, and

****p < 0.0001. The data represent the average of two replicates.

(E) The dot plots show the ratio of titers and FcR-binding against SARS-CoV-2 spike in breastmilk to serum. Significance was determined by a one-way ANOVA;

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Exclusion of particular antibody functions from
breastmilk
Although emerging data point to the transfer of neutralizing anti-

bodies in breastmilk (Fox et al., 2020; Pace et al., 2020), less is

known about the extra-neutralizing functionality of the antibodies

transferred. Comparison of SARS-CoV-2-specific antibody
effector functions in the serum and breastmilk (Figures 2A, 2B,

and S3) pointed to significantly greater functionality of antibodies

capable of inducing more robust levels of antibody-dependent

cellular monocyte phagocytosis (ADCP), antibody-dependent

neutrophil phagocytosis (ADNP), antibody-dependent NK cell

activation (ADNKA) (degranulation/CD107a and chemokine
Cell Reports 37, 109959, November 9, 2021 3
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Figure 2. Breastmilk antibodies have limited antibody-dependent natural killer cell activation (ADNKA)

(A) The dot plots show the antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP), antibody-dependent natural

killer cell activation (ADNKA) (CD107a and MIP-1b), and antibody-dependent complement deposition (ADCD) activity against SARS-CoV-2 spike in the serum of

SARS-CoV-2-infected (left, dark teal) and uninfected (right, light teal) mothers. Significance was determined by Mann-Whitney test; *p < 0.05, **p < 0.01,

***p < 0.001, and ****p < 0.0001. The data represent the average of two replicates (ADCP and ADCD) or two donors (ADNP and ADNKA).

(B) The dot plots show the ADCP, ADNP, ADNKA (CD107a and MIP-1b), and ADCD activity against SARS-CoV-2 spike in the breastmilk from SARS-CoV-2-

infected (left, dark purple) and uninfected (right, light purple) mothers. Significance was determined by Mann-Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001, and

****p < 0.0001. The data represent the average of two replicates (ADCP and ADCD) or two donors (ADNP and ADNKA).

(C) The dot plot shows the ratio of functional activity against SARS-CoV-2 spike in breastmilk to serum. Significance was determined by a one-way ANOVA;

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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secretion/Macrophage Inflammatory Protein-1b or MIP-1b), anti-

body-dependent complement deposition (ADCD), and neutraliza-

tion (NT50) in the serum (Figure 2A). Conversely, limited transfer of

functional antibodies was observed in the breastmilk (Figures 2B

and2C).Althoughall functionalantibodieswere lower inbreastmilk

compared to serum (breastmilk/serum ratio below 1; Figure 2C),

neutralizing antibodies and neutrophil phagocytosing antibodies

(ADNP) had higher transfer ratios into breastmilk compared to

other functional antibodies (Figure 2C). Strikingly, breastmilk had

limited NK-cell activating functions, which are known to transfer

preferentially across the placenta (Jennewein et al., 2019), sug-

gesting strict functional antibody selection into the breastmilk,

potentially aimed at limiting inflammatory antibodies to the

neonatal gut. Interestingly, whereas ADNP can be driven by IgG

or IgA and neutralization can be driven by any antibody isotype,

ADNKA is only induced by IgG, suggesting omission of highly in-

flammatory IgG from breastmilk in natural SARS-CoV-2 infection.

Overall, these data demonstrate functional selection of antibodies

into the breastmilk.
4 Cell Reports 37, 109959, November 9, 2021
Predictors of relative antibody abundance in breastmilk
To further explore the relationship between serum and breastmilk

antibody profiles of SARS-CoV-2-infected mothers, correlations

within and between biofluids were computed. Maternal serum

antibody titers and FcR-binding levels were positively correlated

across isotypes and FcR-binding antibodies (Figure 3A), as previ-

ously noted (Atyeo et al., 2021), highlighting a coordinated serum

response elicited following infection. There was significantly less

correlation across subclasses and isotypes in the breastmilk,

with the exception of IgG1 correlations with FcR binding

(Figure 3B). Although not statistically significant, weak negative

trends were observed between antibody levels and immune func-

tionality in breastmilk (Figure 3B). Together, these data suggest

that the coordinated antibody signature in maternal serum is not

conserved in the breastmilk.

Few statistically significant correlations were observed across

serum and breastmilk (Figure 3C). Overall, most breastmilk fea-

tures were weakly positively correlated with serum features.

Despite lower relative abundance of IgG in breastmilk, the only
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Figure 3. Correlation of antibody features in serum and

breastmilk

The heatmaps illustrate the spearman correlations between SARS-

CoV-2 antibody features measured within the serum (A) and the

breastmilk (B), as well as between serum and breastmilk features

(C). Lighter coloration indicates a more positive correlation coeffi-

cient (r), while darker coloration indicates a more negative corre-

lation coefficient. Significance was determined by a p < 0.05 after

Bonferroni multiple hypothesis correction and is indicated by an

asterisk.
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Figure 4. Contribution of disease severity and time since symptom onset on breastmilk antibody transfer

(A) The scores plot of a partial least-squares regression (PLSR) model built on serum-derived antibody features with maternal disease severity, based on NIH

criteria, as the outcome variable.

(B) PLSR model built using breastmilk-derived antibody features with disease severity as the outcome variable. The dot plot (left) shows the scores of each

sample, with each sample indicated by a dot and the color representing disease severity. The bar plot (right) illustrates the loadings of the features selected via

Elastic Net on latent variable 1 (LV1), with the color indicating whether the feature was enriched in patients with milder (pink) or more severe (purple) COVID-19

symptoms.

(C) Linear regression models fitting the relationship between days since symptom (Sx) onset and IgA1, IgG1, and IgM antibody titers in breastmilk (purple) and

serum (teal). p values are reported below each plot.
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strong positive relationships between serum and breastmilk were

between IgG titers, IgG-binding FcRs (FcgR2a and FcgR3a), and

antibody-driven neutrophil and NK cell function. The lack of signif-

icant correlation betweenmaternal IgA titers and breastmilk IgA ti-

tersand functions suggests that breastmilk IgAmaynot bederived

from maternal serum IgA but could instead be derived from

mucosal plasma cells that may populate breastmilk in a selective

manner (Wilson and Butcher, 2004). Moreover, consistent with

the within-breastmilk analyses, the functional response in breast-

milk was weakly negatively correlated with serum antibody titers

(Figure 3C). These data suggest that, although functional anti-

bodiesare largelyexcluded fromthebreastmilk (Figure2B), certain

functional antibodies from the serum are linked to increased FcR

binding in the breastmilk, pointing to a potential mechanism of se-

lective functional antibody transfer to the breastmilk.

Disease severity impacts the quality of breastmilk
antibody
Mounting evidence points to more robust humoral immune re-

sponses in the setting of more severe disease (Rijkers et al.,
6 Cell Reports 37, 109959, November 9, 2021
2020; Zohar et al., 2020). Thus, to investigate whether COVID-

19 severity contributed to the overall level and function of anti-

bodies in SARS-CoV-2-infected mothers and their breastmilk,

we next classified the women into four groups based on NIH

disease severity criteria (NIH, 2021). Differentiation based on dis-

ease severity was not observed in maternal serumSARS-CoV-2-

specific antibody functional profiles based on disease severity

(Figures 4A and S4A). However, breastmilk SARS-CoV-2-spe-

cific antibody profiles clusteredmore distinctly based on disease

severity (Figures 4B and S4B). Women with more severe COVID-

19 transferred enhanced levels of both FcR binding IgG and IgA

antibodies against several SARS-CoV-2 specificities in breast-

milk, whereas individuals with less severe disease transferred

higher levels of functional antibodies, namely NK cell-activating

(MIP-1b and CD107a) and nucleocapsid-specific ADNP- and

ADCP-inducing antibodies (Figures 4B and S4C). These data

indicate functional selection of antibodies that tracks with dis-

ease severity, suggesting that mothers with more severe dis-

ease, and potentially more inflammatory profiles in their serum,

transfer higher titers of less functional antibodies into breastmilk.
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Time since symptom onset impacts antibody transfer
into breastmilk
Lastly, emerging kinetic analyses of antibody responses

following COVID-19 reveal early, near-simultaneous production

of IgM, IgA, and IgG (Iyer et al., 2020), with subsequent decline

of systemic IgM and IgA (Iyer et al., 2020; Sun et al., 2020).

Thus, we sought to characterize the COVID-19 antibody

response in maternal serum and breastmilk as a function of

time to begin to understand time-dependent relationships

across the compartments. IgA responses declined only slightly

across both the serum and the breastmilk over time after symp-

tom onset (Figure 4C), highlighting the steady production and

transfer of this isotype. Similarly, serum-derived IgG1 weakly

decreased over time, but spike-specific IgG1 antibodies were

transferred weakly but steadily to breastmilk, irrespective of

time from infection. Strikingly, IgM titers waned significantly

over time in the peripheral circulation, as expected, but breast-

milk transfer remained robust over time from symptom onset

(Figure 4C). These trends mark highly stable IgM, IgA, and IgG

transfer to the breastmilk, despite loss of IgM in the serum, irre-

spective of time from symptom onset. The persistent IgM

response in the breastmilk may reflect the continued production

of secretory IgM that may uniquely populate breastmilk during

lactation, even after the serum IgM response to natural infection

is lost, highlighting distinct humoral mechanisms at play

following childbirth to protect infants from infection.

DISCUSSION

Despite the rapid emergence of highly protective COVID-19 vac-

cines globally, infants will likely be among the last to receive vac-

cines, due to the enhanced safety concerns related to vacci-

nating this population. However, infants can be protected

against disease via antibody transfer from their mothers through

the placenta and through breastmilk. Although significant prog-

ress has been made in deciphering the selectivity of antibody

transfer across the placenta, less is known about the mecha-

nisms by which IgG is transferred from blood to breastmilk,

and IgA and IgM are transferred from mucosal plasma cells

and plasmablasts into breastmilk. Such transfer occurs following

birth to promote mucosal immunity against pathogens, including

SARS-CoV-2. While the transfer of neutralizing antibodies into

breastmilk is critical (Fox et al., 2020; Pace et al., 2020), antibody

functions beyond neutralization are also key to protective immu-

nity (Excler et al., 2014; Lu et al., 2018; Mabuka et al., 2012).

Deep humoral profiling identified the expected selective transfer

of persistent IgA and IgM to breastmilk, with reduced and

functionally restricted but persistent IgG transfer. Surprisingly,

cytotoxic antibody functions were largely excluded from the

breastmilk, although neutrophil phagocytosis and neutralization

were preferentially transferred in relation to the level of these

antibody functions in maternal blood. These data point to a

previously unappreciated selection of antibodies across to

breastmilk that may provide critical insights for the design of

next-generation vaccines or therapeutics to protect mothers

and their infants after birth.

This study systematically and broadly measured antibody iso-

types, FcR binding, and antibody function in breastmilk following
COVID-19. Breastmilk contained notable ADCP, ADNP, and

ADCD activity. Surprisingly, we detected limited NK activity in

the breastmilk. Whether this is a SARS-CoV-2-specific phenom-

enon has yet to be determined. Previous studies have shown that

breastmilk antibodies can drive antibody-dependent cellular

cytotoxicity (ADCC) via NK cells against HIV, linked to reduced

infection rates in the infants (Mabuka et al., 2012). However,

HIV is a chronic infection, marked by extraordinarily high levels

of antibodies in infected women, even when on antiretroviral

therapy. Thus, whether NK cell functions are transferred in the

setting of chronic exposure but may be excluded following

recent infection remains to be determined. High levels of

ADNP-inducing antibodies were transferred against spike and

nucleocapsid, suggesting that there may be preferential transfer

of antibodiesmore apt to confer protection atmucosal barriers in

response to infection. Given the potential immunopathologic ac-

tivity of NK cell-activating antibodies (Maucourant et al., 2020),

compared to the less cytopathic role of neutrophil-eliciting anti-

bodies that have been linked to resolution of severe COVID-19

(Atyeo et al., 2020), it is plausible that this selective transfer of

functionality represents a critical evolutionarymechanism to pro-

vide infants with appropriately protective and not destructive

functional antibodies in the mucosa. However, some studies

have suggested a hyper-inflammatory role for IgA able to recruit

neutrophils at mucosal surfaces, particularly in autoimmune dis-

eases (Breedveld and van Egmond, 2019). Therefore, further

research must be done to understand the role of functional anti-

bodies both in breastmilk and at mucosal surfaces.

Whether immune transfer through breastmilk will remain sta-

ble for months after infection remains incompletely understood.

Longitudinal studies on breastmilk composition have demon-

strated that the concentration of antibodies decreases in mature

milk compared to colostrum (Goldman et al., 1982; Goonatilleke

et al., 2019). However, how antibody quality and functionality

changes over the months following birth is unknown. Although

emerging data point to a critical role for IgA in regulating com-

mensalization (Palm et al., 2014; Rogier et al., 2014), the data

here argue for long persistence of natural infection-induced

transfer of all antibody isotypes, dominated by both IgA and

IgM antibodies via breastmilk to the infant. Whether these anti-

bodies are drawn from recruited plasma cells seeded within

the lung remains unclear but may have important implications

for vaccines that will not directly lead to the induction of lung-

resident plasma cells.

Despite the relatively low incidence of neonatal and infant

SARS-CoV-2 infection, this population is more likely to require

hospitalization compared to other pediatric groups (Kim et al.,

2020). Because vaccines will likely be tested last in this popula-

tion, young children will remain vulnerable long after vaccines

have rolled out across the globe. Moreover, given the potential

for this virus to remain endemic in our population, an under-

standing of mechanisms to protect infants is urgently needed

(Lavine et al., 2021; Shaman and Galanti, 2020). These data illus-

trate biased transfer of antibody isotypes that can be coupled to

a secretory chain, IgM and IgA, into breastmilk following natural

infection, as well as the selection of antibodies with particular

functional capabilities. Emerging data from vaccinated pregnant

and lactating women suggest that vaccine-induced transfer may
Cell Reports 37, 109959, November 9, 2021 7
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be altered due to the extraordinarily high levels of IgG antibodies

induced by the current Emergency Use Authorization-approved

mRNA vaccines, providing infants with both robust IgA and IgG

immunity (Gray et al., 2021) that may be able to confer enhanced

immunity compared to natural infection. Studies are needed to

understand the durability of antibody transfer following both nat-

ural and vaccine-induced protection to guide vaccine design and

deployment in the future for this uniquely vulnerable population.

Limitations
This study focused on immune profiling of colostrum to ensure

uniform comparison of milk. Because only small volumes were

available at the time of collection, 1 to 2 days postpartum, the

study was unable to examine other antibody specificities or

how this immune transfer may change over time with the change

in milk over the course of lactation. However, future studies able

to collect milk from birth throughout the first few months of life

may have the opportunity to yield additional insights into both

the persistence and changes in quality of SARS-CoV-2-specific

antibody transfer over time. Moreover, comparison to other

pathogen-specific antibodies may provide new insights into

the mechanisms by which antibodies confer protection in the

mucosa of neonates and provide an opportunity to deconvolute

the rules of antibody transfer to breastmilk to guide next-gener-

ation vaccine design.
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Antibodies

anti-CD66b-Pacific blue BioLegend CAT # 305112

APC-Cy7 Mouse Anti-Human CD16 BD Biosciences CAT # 557758 RRID:AB_396853

CD56 PE-Cy7 Mouse Anti-Human CD56 BD Biosciences CAT # 557747

PE MIP-1b Mouse anti-Human BD Biosciences CAT # 550078 RRID:AB_393549

Pacific Blue Mouse Anti-Human CD3 BD Biosciences CAT # 558117 RRID:AB_1595437

FITC Goat IgG anti-C3 MP Biomedicals CAT # 855385

Mouse Anti-Human IgG1-Fc PE Southern Biotech CAT # 9054-09

Mouse Anti-Human IgG2-Fc PE Southern Biotech CAT # 9060-09

Mouse Anti-Human IgG3-Hinge PE Southern Biotech CAT # 9210-09

Mouse Anti-Human IgG4-Fc PE Southern Biotech CAT # 9200-09

Mouse Anti-Human IgA1-Fc PE Southern Biotech CAT # 9130-09

Mouse Anti-Human IgM-Fc PE Southern Biotech CAT # 9020-09

Bacterial and virus strains

SARS-CoV-2-S pseudovirus with a luciferase reporter This paper N/A

Chemicals, peptides, and recombinant proteins

SARS-CoV-2 S Lake Pharma N/A

SARS-CoV-2 RBD Sino Biological CAT # 40592-V08H

SARS-CoV-2 N Aalto Bio Reagents CAT # CK 6404-b

SARS-CoV-2 S1 Sino Biological Cat # 40591-V08H

SARS-CoV-2 S2 Sino Biological CAT # 40590-V08B

A/Michigan/45/2015 (H1N1) Immunetech CAT # IT-003-00105DTMp

B/Phuket/3073/2013 Immunetech CAT # IT-003-B11DTMp

A/Singapore/INFIMH-16-0019/2016 Immunetech CAT # IT-003-00434DTMp

Human Fc receptors Produced at the Duke

Human Vaccine Institute,

{Boesch, 2014 #15}

N/A

Streptavidin-R-Phycoerythrin Prozyme CAT # PJ31S

FIX&Perm Cell Permeabilization Kit Life Tech CAT # GAS001S100

CAT # GAS002S100

Human IL-15 Recombinant Protein, eBioscience ThermoFisher Scientific CAT # BMA31

Brefeldin A Sigma Aldrich CAT # B7651

GolgiStop BD Biosciences CAT # 554724

Critical commercial assays

BirA-500: BirA biotin-protein ligase standard reaction kit Avidity CAT # BirA500

RosetteSep Human NK Cell Enrichment Cocktail Stem Cell Technologies CAT # 15065

Steady-Glo Luciferase Assay Promega CAT # E2510

Deposited data

Generated Code This paper https://doi.org/10.5281/zenodo.5567701

Experimental models: cell lines

THP-1 Cells ATCC CAT # TIB-202 RRID: CVCL_0006

Software and algorithms

GraphPad Prism GraphPad https://www.graphpad.com/

scientificsoftware/prism/

Intellicyt ForeCyt Software Sartorious https://intellicyt.com/products/software/

R programming language Version 4.0.0 https://www.r-project.org/
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FluoSpheres NeutrAvidin-Labeled Microspheres, 1.0 mm,
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Galit Alter

(galter@partners.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The dataset generated during this study is available upon reasonable request. Code for the multivariate analyses can be found at

https://github.com/Lauffenburger-Lab or zenodo (DOI 10.5281/zenodo.5567701). Any additional information required to reanalyze

the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample Cohort
Maternal serum and breastmilk were collected from 20 lactating women who were previously infected during pregnancy with SARS-

CoV-2 and 26 uninfected lactating women who were contemporaneously enrolled (Table 1). After quality control, one sample was

removed from analyses. All SARS-CoV-2 + individuals were tested either at the time of symptom onset or at the delivery admission

(for asymptomatic positives) by nasopharyngeal swab and real-time reverse-transcriptase polymerase chain reaction (RT-PCR). The

SARS-CoV-2 negative control population was defined as those never known to be positive for SARS-CoV-2 at any time in pregnancy

andwere asymptomatic and tested negative for SARS-CoV-2 by nasopharyngeal swab and RT-PCR at delivery. Maternal serumwas

collected at the time of delivery. Breastmilk samples were collected 1-3 days after delivery. Samples were collected at Massachu-

setts General Hospital (MGH), Brigham and Women’s Hospital (BWH) and Beth Israel Deaconess Medical Center (BIDMC). All en-

rollees provided informed consent. This study was approved by the MGH-BWH Institutional Review Board and the BIDMC Institu-

tional Review Board.

Cell Lines
THP-1 cells were purchased from ATCC (ATCC� TIB-202), were grown at 37�C, 5% CO2 and were maintained in RPMI with 10%

fetal bovine serum, penicillin/streptomycin, L-glutamine, HEPES, and beta-mercaptoethanol.

Primary Immune Cells
Fresh peripheral blood was collected at MGH and the Ragon Institute from healthy volunteers. All volunteers gave written consent,

were over 18, and were deindentified prior to blood processing. Neutrophils isolated from peripheral blood were maintained at 37�C,
5% CO2 in RPMI with 10% fetal bovine serum, L-glutamine, HEPES, and penicillin/streptomycin. Human NK cells isolated from pe-

ripheral blood were maintained at 37�C, 5%CO2 in RPMI with 10% fetal bovine serum, L-glutamine, HEPES, penicillin/streptomycin

and IL-15 for the duration of the assay. The study was approved by the MGH Institutional Review Board.

METHOD DETAILS

Isotype and FcR-binding measurements
Amultiplexed luminex assay was used to measure antigen-specific isotypes and FcR-binding, as previously described (Brown et al.,

2017). Briefly, antigens were covalently linked to carboxyl-modified Magplex ª Luminex beads using Sulfo-NHS (Pierce) and EDC

(Thermo Fisher). Antigens used for this assay were SARS-CoV-2 RBD (kindly provided by Aaron Schmidt), SARS-CoV-2 S
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(kindly provided by Eric Fischer), SARS-CoV-2 N (Aalto Bio Reagents). SARS-CoV-2 S1 (Sino Biological), and SARS-CoV-2 S2 (Sino

Biological). Antigen-coupled beads were blocked with PBS-TBN, resuspended in PBS, and maintained at 4�C.
Immune complexes were formed by adding antigen coupled beads to appropriately diluted serum or breastmilk supernatant.

Plates were then incubated overnight at 4�C, shaking at 700 rpm. The next day, plates were washed in assay buffer (0.1% BSA,

0.02% Tween in PBS). To detect antigen-specific isotypes, immune complexes were stained with PE-coupled mouse anti-human

IgG1, IgA1, IgA2, or IgM (Southern Biotech). To detect FcR-binding, Avi-Tagged FcRs (Duke Human Vaccine Institute) were bio-

tinylated using a BirA500 kit (Avidity). The biotinylated FcRs were then labeled with streptavidin-PE and added to the immune com-

plexes. Fluorescence was acquired using an iQue (Intellicyt). Antigen-specific isotype titer and FcR-binding was reported as the me-

dian fluorescence intensity (MFI).

Antibody-dependent cellular phagocytosis (ADCP)
The ADCP assaywas performed as previously described (Ackerman et al., 2011). SARS-CoV-2 spike (kindly provided by Eric Fischer)

and nucleocapsid (Aalto Bioreagents) was biotinylated using Sulfo-NHS-LC-LC-biotin (Thermo Fisher), desolated using Zeba col-

umns (Thermo Fisher), and coupled to yellow-green Neutravidin beads (Invitrogen) for 2 hours at 37�C or overnight at 4�C. Coupled
beads were washed twice in 0.01%BSA in PBS and resuspended at 10 ug/mL for use in the assay. Immune complexes were formed

by adding coupled beads to 96-well plates with equal volume of diluted serum (1:100) or diluted breastmilk (1:10). Immune complexes

were incubated for two hours at 37�C. After the incubation, the immune complexes were washed, and THP-1 cells were added to the

immune complexes at 1.25x10̂ 5 cells/mL. Cells were incubated with the immune complexes overnight at 37�C. The next day, the

cells were fixed in 4%PFA. Fluorescence was acquired using an iQue (Intellicyt) and analyzed using Forecyt software. A Phago score

was determined using the following formula: (percentage of bead-positive cells) x (GeoMean of MFI of bead-positive cells)/10,000

Antibody-dependent neutrophil phagocytosis (ADNP)
The ADNP assay was performed as described (Karsten et al., 2019). Spike and nucleocapsid biotinylation, bead coupling, and im-

mune complex formation was performed as described for ADCP. Leukocytes were isolated from fresh peripheral blood from healthy

donors (Ragon Institute) by ammonium-chloride potassium (ACK) lysis. After immune complex incubation, immune complexes were

washed and leukocytes were added at a concentration of 2.5 3 10̂ 5 cells/mL. Cells and immune complexes were incubated for 1

hour at 37�C. Following incubation, neutrophils were stained using anti-CD66b Pacblue (Biolegend). Cells were fixed with 4% PFA.

Fluorescence was acquired as described for ADCP.

Antibody-dependent complement deposition (ADCD)
The ADCD assay was performed as previously described (Fischinger et al., 2019). Spike biotinylation, bead coupling, and immune

complex formation was performed as described for ADCP, using red Neutravidin beads (Invitrogen) and 1:10 dilution of serum and

1:1 dilution of breastmilk. Following immune complex formation, plates were washed and guinea pig complement (Cedarlane) diluted

in gelatin veronal buffer supplemented with calcium and magnesium (Boston BioProducts) was added. Plates were incubated for

20 minutes at 37�C. Plates were washed twice with 15mM EDTA in PBS and C3-deposition was detected by staining with anti-C3

FITC (MPbio). Fluorescence was acquired using an iQue (Intellicyt) and C3-deposition is reported as the median fluorescence inten-

sity of FITC.

Antibody-dependent NK cell activation (ADNKA)
ELISA plates were coated with 2 ug/mL of spike, incubated for 2 hours at 37�C, washed three times with PBS and blocked overnight

at 4�C in 5% BSA in PBS. Human NK cells were isolated from peripheral blood (MGH Blood Bank) using RosetteSep kit (Stem Cell

Technologies) followed by Ficoll separation to isolate cells. NK cells weremaintained overnight at 37�C in RPMI media with 10% fetal

bovine serum, L-glutamine, HEPES, penicillin/streptomycin and IL-15. Blocked plates were washed three times with PBS, and

diluted serum (1:50) and diluted breastmilk (1:5) were added to the coated ELISA plates. Plates were incubated for 2 hours at

37�C. After the incubation, plates were washed three times with PBS, and NK cells were added at a concentration of 2.5 3 10̂ 5

cells/mL in media supplemented with GolgiStop (BD), Brefeldin A (BFA, Sigma Aldrich) and anti-CD107a PE-Cy5 (BD) and were incu-

bated for 5 hours at 37�C. Following the incubation, NK cells were stained for surfacemarkers with anti-CD3 PacBlue (BD), anti-CD16

APC-Cy5 (BD), and anti-CD56 PE-Cy7 (BD). After staining, cells were fixed using the FIX&PERM A/B kit (Life Tech) and stained for

MIP-1b (anti-MIP-1b PE, BD). Fluorescence was acquired using an iQue (Intellicyt). NK cells were gated as CD56+/CD16+/CD3- and

NK cells activity was determined as the percentage of NK cells that were positive for CD107a and MIP-1b.

QUANTIFICATION AND STATISTICAL ANALYSIS

Univariate Analysis
Univariate data was visualized and analyzed using Graphpad software, version 8.0. The data is plotted as the average of two repli-

cates. Breastmilk data was dilution corrected. Transfer ratios were calculated by dividing breastmilk data by serum data for a partic-

ular patient. Spearman correlations between features were calculated using the ’corrplot’ package (version 0.90) in R (version 4.0.0).

Bonferroni multiple hypothesis correction was performed to determine significant correlations.
Cell Reports 37, 109959, November 9, 2021 e3
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Multivariate Analyses
Multivariate analyses were performed in R (version 4.0.0). The raw luminex data was log transformed, centered and scaled. Partial

least square regression (PLSR) was performed to regress luminex features on severity scores for maternal infection (Figure 4). PLSR

models were generated with the ‘ropls’ Bioconductor package. Prior to PLSR, features were reduced using Elastic Net variable reg-

ularization and selection to avoid feature redundancy and overfitting (Zou and Hastie, 2005). Utilizing the ‘caret’ package, 100 trials of

Elastic Net were run, selecting features present in 35% or more of the Elastic Net models to be included in the final PLSR. PLSR

models were validated using leave-one-out cross validation (19 trials). A linear regression was performed to correlate the predicted

‘y’ values (or antibody titer) with the actual ‘y’ values, reporting the slope and standard deviation. A perfect model would have a slope

of 1.
e4 Cell Reports 37, 109959, November 9, 2021
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